

Handbücher/Manuals

VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH

Ohmstraße 4 D-91074 Herzogenaurach Tel.: +49-9132-744-0 Fax: +49-9132-744-144 Internet: www.vipa.de E-Mail: Info@vipa.de

Manual

VIPA System 200V

SM

Order No.: VIPA HB97E_SM Rev. 11/30

The information contained in this manual is supplied without warranties. The information is subject to change without notice.

 © Copyright 2011 VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH
 Ohmstraße 4, D-91074 Herzogenaurach,
 Tel.: +49 (91 32) 744 -0
 Fax.: +49 (91 32) 744-1864
 EMail: info@vipa.de
 http://www.vipa.de

Hotline: +49 (91 32) 744-1150

All rights reserved

Disclaimer of
liabilityThe contents of this manual were verified with respect to the hard- and
software.However, we assume no responsibility for any discrepancies or errors. The
information in this manual is verified on a regular basis and any required
corrections will be included in subsequent editions.

Suggestions for improvement are always welcome.

Trademarks VIPA, System 100V, System 200V, System 300V and System 500V are registered trademarks of VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 is a registered trademark of profichip GmbH.

STEP und S7-300 are registered trademarks of Siemens AG.

Any other trademarks referred to in the text are the trademarks of the respective owner and we acknowledge their registration.

About this manual

This manual describes the System 200V SM modules that are available from VIPA. In addition to the product summary it contains detailed descriptions of the different modules. You are provided with information on the connection and the utilization of the System 200V SM modules. Every chapter is concluded with the technical data of the respective module.

Overview Chapter 1: Basics

This introduction presents the VIPA System 200V as a centralized as well as decentralized automation system.

The chapter also contains general information about the System 200V, i.e. dimensions, installation and operating conditions.

Chapter 2: Assembly and installation guidelines

This chapter provides all the information required for the installation and the hook-up of a controller using the components of the System 200V.

Chapter 3-5: Digital input/output modules

These chapters describe the digital remote I/O that is available from VIPA. It provides all the information that is required for applications using these modules. Chapter 3 contains information on the input modules, chapter 4 the information on the output modules and chapter 5 provides details on input/output modules.

Chapter 6-8: Analog input/output modules

These chapters contain a description of the analog remote I/O. The chapter also provides all the information that is required for applications using each module. Chapter 6 describes the input modules, chapter 7 the output modules and chapter 8 the analog input/output modules that are available from VIPA.

Chapter 9: SM238C - Combination module

In this chapter follows the description of the combination module SM 238C that includes a digital in-/output module with counter function and an analog in-/output module.

Contents

	erations	
Safety inform	nation	2
Chapter 1	Basics	.1-1
Safety infor	mation for Users	. 1-2
Component	S	. 1-4
	scription System 200V	
	Assembly and installation guidelines	
-	, , , , , , , , , , , , , , , , , , ,	
	imensions	
	guidelines	
	Digital input modules	
	rview	
221-1BF00	- DI 8xDC 24V	. 3-4
	- DI 8xDC 24V 0.2ms	
	- Dla 8xDC 24V	
	- DIa 8xDC 24V 0.2ms	
	- DI 8xDC 24V - ECO	
	- DI 8xDC 24V 0.2ms	
	- DI 8xDC 24V NPN	
	- DI 4xAC/DC 90230V	
221-1FF20	- DI 8xAC/DC 60230V	3-20
221-1FF30	- DI 8xAC/DC 2448V	3-22
	- DI 8xAC 240V	
	- DI 8xAC/DC 180265V	
221-1BH00	- DI 16xDC 24V with UB4x	3-28
221-1BH10	- DI 16xDC 24V	3-30
	- DI 16xDC24V/1C	
	- DI 16xDC 24V - ECO	
	- DI 16xDC 24V NPN with UB4x	
	- DI 16xDC 24V NPN	
	- DI 32xDC 24V	
	Digital output modules	
System ove	rview	. 4-2
	- DO 8xDC 24V 1A	
	- DO 8xDC 24V 2A	
	- DO 8xDC 24V 2A separated 4 á 2	
	- DO 8xDC 24V 0.5A - ECO	
	- DO 8xDC 24V 0.5A NPN	
	- DO 16xDC 24V 0.5A with UB4x	
	- DO 16xDC 24V 1A	
	- DO 16xDC 24V 2A	
	- DO 16xDC 24V 0.5A - ECO	
	- DO 16xDC 24V 0.5A NPN	
	- DO 16xDC 24V 0.5A NPN	
	- DO 32xDC 24V 1A	
	- DO 2xAC 100230V 2A	
	- DO 8xRelay COM	
222-18010	- DO 4xRelay	4-40

222-1HD20 - DO 4xRelay bistable	
222-1FF00 - DO 8xSolid State COM	4-44
222-1FD10 - DO 4xSolid State	4-46
Chapter 5 Digital input/output modules	5-1
System overview	5-2
Security hints for DIO modules	5-2
223-1BF00 - DIO 8xDC 24V 1A	
223-2BL10 - DI 16xDC 24V, DO 16xDC 24V 1A	
Chapter 6 Analog input modules	6-1
System overview	6-2
General	
231-1BD30 - AI 4x12Bit ±10V - ECO	
231-1BD40 - AI 4x12Bit 420mA, ±20mA - ECO	6-11
231-1BD52 - AI 4x16Bit, multiinput	6-16
231-1BD53 - AI 4x16Bit, multiinput	
231-1BD60 - AI 4x12Bit, 4 20mA, isolated	6-38
231-1BD70 - AI 4x12Bit, ±10V, isolated	6-41
231-1BF00 - AI 8x16Bit	
231-1FD00 - AI 4x16Bit f	
Chapter 7 Analog output modules	
System overview	
General	
Analog value	
232-1BD30 - AO 4x12Bit ±10V, 0 10V - ECO	
232-1BD40 - AO 4x12Bit, 0/420mA - ECO	
232-1BD51 - AO 4x12Bit, multioutput	
Chapter 8 Analog input/output modules	
System overview	
Security note for range allocation	
General	
234-1BD50 - AI 2/AO 2x12Bit - Multiin-/output	
234-1BD60 - AI 4/AO 2x12Bit - Multiin-/output	
Chapter 9 SM 238C - Combination module	
Overview	
In-/Output part	
Analog part	
Analog part - Project engineering	
Analog part - Alarm and diagnostic	
Digital part Digital part - Counter - Fast introduction	
Digital part - Counter - Project engineering	
Digital part - Counter - Froject engineering Digital part - Counter - Functions	9-19 10_0
Digital part - Counter - Operating modes	
Digital part - Counter - Additional functions	9-31
Digital part - Counter - Alarm and diagnostic	
Technical Data	
Appendix	
Index	

User considerations

Objective and contents	This manual describes the modules that are suitable for use in the System 200V. It contains a description of the construction, project implementation and the technical data.
Target audience	The manual is targeted at users who have a background in automation technology.
Structure of the manual	The manual consists of chapters. Every chapter provides a self-contained description of a specific topic.
Guide to the document	 The following guides are available in the manual: an overall table of contents at the beginning of the manual an overview of the topics for every chapter an index at the end of the manual.
Availability	The manual is available in:printed form, on paperin electronic form as PDF-file (Adobe Acrobat Reader)
lcons Headings	Important passages in the text are highlighted by following icons and headings:
\bigwedge	Danger! Immediate or likely danger. Personal injury is possible.
$\underline{\wedge}$	Attention! Damages to property is likely if these warnings are not heeded.
1	Note! Supplementary information and useful tips.

Safety information

Applications conforming with specifications The System 200V is constructed and produced for:

- all VIPA System 200V components
- communication and process control
- general control and automation applications
- industrial applications
- operation within the environmental conditions specified in the technical data
- installation into a cubicle

Danger!

This device is not certified for applications in

• in explosive environments (EX-zone)

Documentation

The manual must be available to all personnel in the

- project design department
- installation department
- commissioning
- operation

The following conditions must be met before using or commissioning the components described in this manual:

- Modification to the process control system should only be carried out when the system has been disconnected from power!
- Installation and modifications only by properly trained personnel
- The national rules and regulations of the respective country must be satisfied (installation, safety, EMC ...)

Disposal

National rules and regulations apply to the disposal of the unit!

Chapter 1 Basics

Overview The focus of this chapter is on the introduction of the VIPA System 200V. Various options of configuring central and decentral systems are presented in a summary.

The chapter also contains the general specifications of the System 200V, i.e. dimensions, installation and environmental conditions.

Content	Торіс	Page
	Chapter 1 Basics	
	Safety information for Users	
	Overview	
	Components	1-4
	General description System 200V	1-5

Safety information for Users

Handling of electrostatically sensitive modules VIPA modules make use of highly integrated components in MOStechnology. These components are extremely sensitive to over-voltages that can occur during electrostatic discharges.

The following symbol is attached to modules that can be destroyed by electrostatic discharges:

The symbol is located on the module, the module rack or on packing material and it indicates the presence of electrostatic sensitive equipment.

It is possible that electrostatic sensitive equipment is destroyed by energies and voltages that are far less than the human threshold of perception. These voltages can occur where persons do not discharge themselves before handling electrostatically sensitive modules and they can damage components thereby, causing the module to become inoperable or unusable. Modules that have been damaged by electrostatic discharges may fail after a temperature change, mechanical shock or changes in the electrical load.

Only the consequent implementation of protection devices and meticulous attention to the applicable rules and regulations for handling the respective equipment can prevent failures of electrostatically sensitive modules.

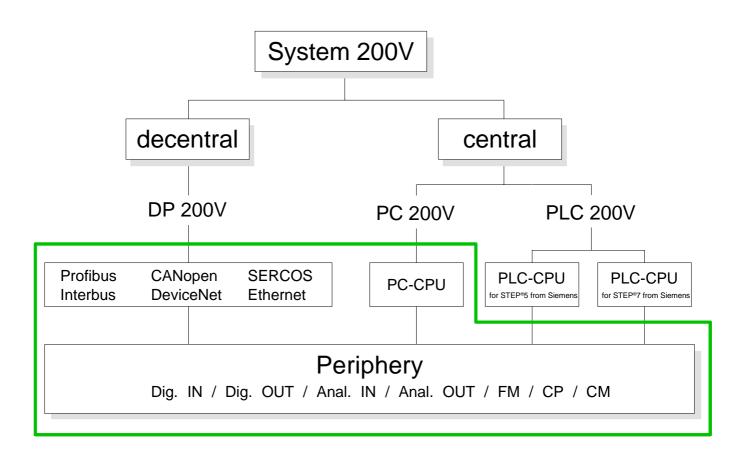
Modules have to be shipped in the original packing material.

Shipping of electrostatically sensitive modules

Measurements and alterations on electrostatically sensitive modules When you are conducting measurements on electrostatically sensitive modules you should take the following precautions:

- Floating instruments must be discharged before use.
- Instruments must be grounded.

Modifying electrostatically sensitive modules you should only use soldering irons with grounded tips.

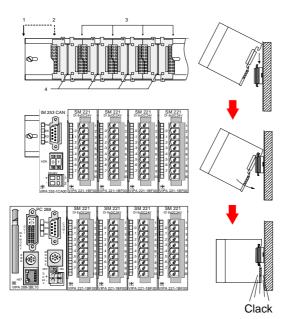

Attention!

Personnel and instruments should be grounded when working on electrostatically sensitive modules.

Overview

The System 200V The System 200V is a modular automation system for centralized and decentralized applications requiring low to medium performance specifications. The modules are installed directly on a 35mm mounting rail. Bus connectors inserted into the mounting rail provide the interconnecting bus.

The following figure illustrates the capabilities of the System 200V:


Components

Centralized system	 The System 200V series consists of a number of PLC-CPUs. These are programmed in STEP[®]5 or STEP[®]7 from Siemens. CPUs with integrated Ethernet interfaces or additional serial interfaces simplify the integration of the PLC into an existing network or the connection of additional peripheral equipment. The application program is saved in Flash or an additional plug-in memory module. The PC based CPU 288 can be used to implement operating/monitoring tasks, control applications or other file processing applications. The modules are programmed in C++ or Pascal. The PC 288-CPU provides an active interface to the backplane bus and can therefore be employed as central controller for all peripheral and function modules of the VIPA System 200V. With the appropriate expansion interface the System 200V can support up to 4 rows.
Decentralized	In combination with a Profibus DP master and slave the PLC-CPUs or the PC-CPU form the basis for a Profibus-DP network in accordance with DIN 19245-3. The DP network can be configured with WinNCS VIPA configuration tool res. Siemens SIMATIC Manager.
system	Other fieldbus systems may be connected by means of slaves for Interbus, CANopen, DeviceNet, SERCOS and Ethernet.
Peripheral	A large number of peripheral modules are available from VIPA, for example digital as well as analog inputs/outputs, counter functions, displacement sensors, positioners and serial communication modules.
modules	These peripheral modules can be used in centralized as well as decentralized mode.
Integration over GSD File	The functionality of all VIPA system components are available via different GSD-files. For the Profibus interface is software standardized, we are able to guarantee the full functionality by including a GSD-file using the Siemens SIMATIC Manager. For every system family there is an own GSD-file. Actual GSD files can be found at ftp.vipa.de/support.

General description System 200V

- Structure/ dimensions
- Mounting rail 35mm
- Peripheral modules with recessed labelling
- Dimensions of the basic enclosure: 1tier width: (HxWxD) in mm: 76x25.4x74 in inches: 3x1x3 2tier width: (HxWxD) in mm: 76x50.8x74 in inches: 3x2x3

Installation Please note that you can only install header modules, like the CPU, the PC and couplers into plug-in location 1 or 1 and 2 (for double width modules).

- [1] Header modules, like PC, CPU, bus couplers (double width)
- [2] Header module (single width)
- [3] Peripheral module
- [4] Guide rails

Note

A maximum of 32 modules can be connected at the back plane bus. Take attention that here the **maximum sum current** of **3.5A** is not exceeded.

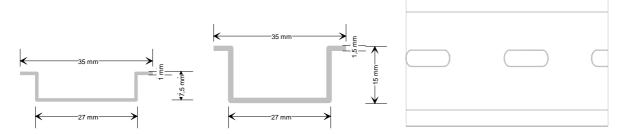
Please install modules with a high current consumption directly beside the header module.

Reliability
 Wiring by means of spring pressure connections (CageClamps) at the front-facing connector, core cross-section 0.08...2.5mm² or 1.5 mm² (18pole plug)
 Complete isolation of the wiring when modules are exchanged
 Every module is isolated from the backplane bus
 ESD/Burst acc. IEC 61000-4-2 / IEC 61000-4-4 (to level 3)
 Shock resistance acc. IEC 60068-2-6 / IEC 60068-2-27 (1G/12G)
 Class of protection IP20

Storage temperature: -25 ... +70°C

- Relative humidity: 5 ... 95% without condensation
- Ventilation by means of a fan is not required

Chapter 2 Assembly and installation guidelines

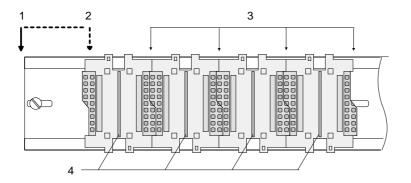

Overview This chapter contains the information required to assemble and wire a controller consisting of Systems 200V components.

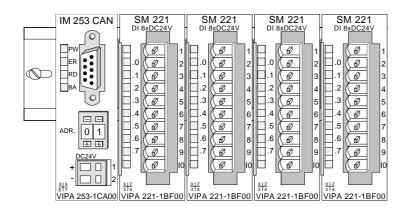
Overview

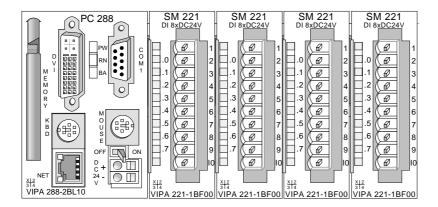
General The modules are installed on a carrier rail. A bus connector provides interconnections between the modules. This bus connector links the modules via the backplane bus of the modules and it is placed into the mounting rail that carries the modules.

Mounting rail You may use the following standard 35mm mounting rails to mount the System 200V modules:

Bus connector System 200V modules communicate via a backplane bus connector. The backplane bus connector is isolated and available from VIPA in of 1-, 2-, 4- or 8tier width.


The following figure shows a 1tier connector and a 4tier connector bus:




The bus connector is isolated and has to be inserted into the mounting rail until it clips in its place and the bus connections protrude from the rail.

Mounting rail installation

The following figure shows the installation of a 4tier width bus connector in a mounting rail and the plug-in locations for the modules. The different plug-in locations are defined by guide rails.

- [1] Header module, like PC, CPU, bus coupler, if double width
- [2] Header module (single width)
- [3] Peripheral module
- [4] Guide rails

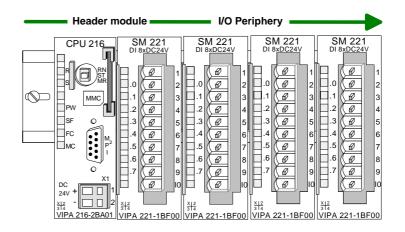
Note

A maximum of 32 modules can be connected at the back plane bus.

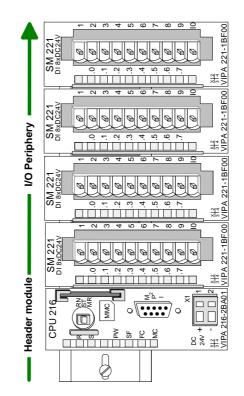
Take attention that here the **maximum sum current** of **3.5A** is not exceeded.

Assembly regarding the current consumption

- Use bus connectors as long as possible.
- Sort the modules with a high current consumption right beside the header module. At ftp.vipa.de/manuals/system200v a list of current consumption of every System 200V module can be found.


•

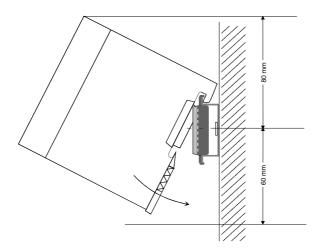
Assembly horizontal respectively vertical


You may install the System 200V as well horizontal as vertical. Please regard the allowed environment temperatures:

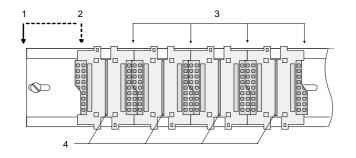
- horizontal structure: from 0 to 60°
 - vertical structure: from 0 to 40°

The horizontal structure always starts at the left side with a header module (CPU, bus coupler, PC), then you plug-in the peripheral modules beside to the right. You may plug-in maximum 32 peripheral modules.

The vertical structure is turned for 90° against the clock.



Assembly

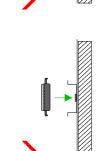


Please follow these rules during the assembly!

- Turn off the power supply before you insert or remove any modules!
- Make sure that a clearance of at least 60mm exists above and 80mm below the middle of the bus rail.

• Every row must be completed from left to right and it has to start with a header module (PC, CPU, and bus coupler).

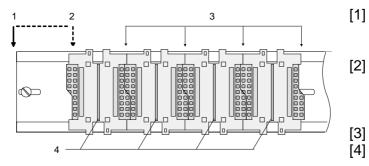
- [1] Header module, like PC, CPU, bus coupler, if double width
 [2] Header module
- [2] Header module (single width)
- [3] Peripheral module
- [4] Guide rails
- Modules are to install adjacent to each other. Gaps are not permitted between the modules since this would interrupt the backplane bus.
- A module is only installed properly and connected electrically when it has clicked into place with an audible click.
- Plug-in locations after the last module may remain unoccupied.


Note!

A maximum of 32 modules can be connected at the back plane bus. Take attention that here the maximum **sum current** of **3.5A** is not exceeded.

•

from the side.



Install the mounting rail. Make sure that a clearance of at least 60mm exists above and 80mm below the middle of the bus rail.

The following sequence represents the assembly procedure as viewed

· Press the bus connector into the rail until it clips securely into place and the bus-connectors protrude from the mounting rail. This provides the basis for the installation of your modules.

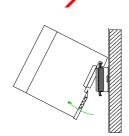
Start at the outer left location with the installation of your header module • like CPU, PC or bus coupler and install the peripheral modules to the right of this.

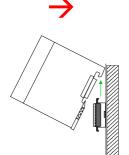
- [1] Header module like PC, CPU, bus coupler
 - Header module when this is a double width or a peripheral module Peripheral module
- Guide rails [4]
- Insert the module that you are installing into the mounting rail at an angle of 45 degrees from the top and rotate the module into place until it clicks into the mounting rail with an audible click. The proper connection to the backplane bus can only be guaranteed when the module has properly clicked into place.

Attention!

Power must be turned off before modules are installed or removed!

Clack


Removal procedure


The following sequence shows the steps required for the removal of modules in a side view.

- The enclosure of the module has a spring-loaded clip at the bottom by which the module can be removed from the rail.
- Insert a screwdriver into the slot as shown.

• The clip is unlocked by pressing the screwdriver in an upward direction.

• Withdraw the module with a slight rotation to the top.

Attention!

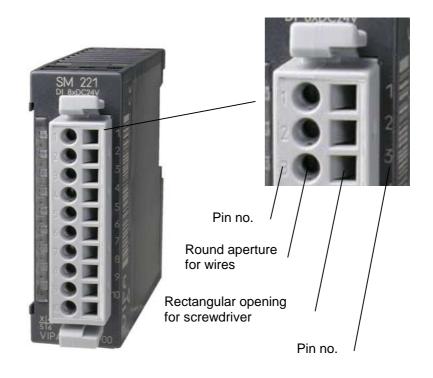
Power must be turned off before modules are installed or removed!

Please remember that the backplane bus is interrupted at the point where the module was removed!

Wiring

Outline

Most peripheral modules are equipped with a 10pole or an 18pole connector. This connector provides the electrical interface for the signaling and supply lines of the modules.

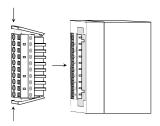

The modules carry spring-clip connectors for the interconnections and wiring.

The spring-clip connector technology simplifies the wiring requirements for signaling and power cables.

In contrast to screw terminal connections, spring-clip wiring is vibration proof. The assignment of the terminals is contained in the description of the respective modules.

You may connect conductors with a wire cross-section from 0.08mm² up to 2.5mm² (max. 1.5mm² for 18pole connectors).

The following figure shows a module with a 10pole connector.

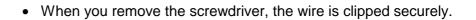


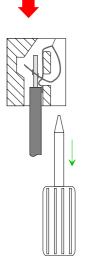
Note!

The spring-clip is destroyed if you insert the screwdriver into the opening for the hook-up wire!

Make sure that you only insert the screwdriver into the square hole of the connector!

Wiring procedure



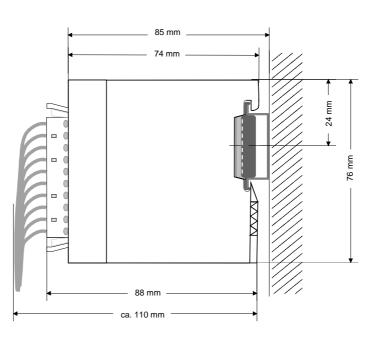

 Install the connector on the module until it locks with an audible click. For this purpose you press the two clips together as shown.
 The connector is now in a permanent position and can easily be wired.

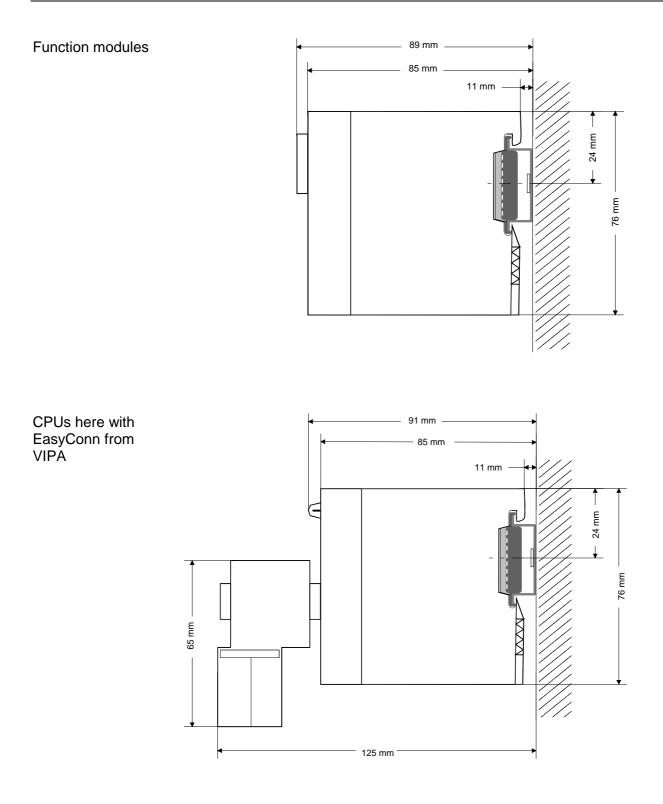
The following section shows the wiring procedure from above.

- Insert a screwdriver at an angel into the square opening as shown.
- Press and hold the screwdriver in the opposite direction to open the contact spring.

• Insert the stripped end of the hook-up wire into the round opening. You can use wires with a diameter of 0.08mm² to 2.5mm² (1.5mm² for 18pole connectors).

Wire the power supply connections first followed by the signal cables (inputs and outputs).


60 mm


Assembly dimensions

Overview	Here follow all the important dimensions of the System 200V.
Dimensions Basic enclosure	1tier width (HxWxD) in mm: 76 x 25.4 x 74 2tier width (HxWxD) in mm: 76 x 50.8 x 74
Installation dimensions	

Installed and wired dimensions

In- / Output modules

Installation guidelines

General	The installation guidelines contain information on the proper assembly of System 200V. Here we describe possible ways of interference that may disturb the controlling system and how you have to approach shielding and screening issues to ensure the electromagnetic compatibility (EMC).
What is EMC?	The term "electromagnetic compatibility" (EMC) refers to the ability of an electrical device to operate properly in an electromagnetic environment without interference from the environment or without the device causing illegal interference to the environment. All System 200V components were developed for applications in harsh industrial environments and they comply with EMC requirements to a large degree. In spite of this you should implement an EMC strategy before installing any components which should include any possible source of interference.
Possible sources for disturbances	 Electromagnetic interference can enter your system in many different ways: Fields I/O signal lines Bus system

- Power supply
- Protective conductor

Interference is coupled into your system in different ways, depending in the propagation medium (conducted or not) and the distance to the source of the interference.

We differentiate between:

- galvanic coupling
- capacitive coupling
- inductive coupling
- radiated power coupling

The most important rules for ensuring EMC

In many cases, adherence to a set of very elementary rules is sufficient to ensure EMC. For this reason we wish to advise you to heed the following rules when you are installing your controllers.

- During the installation of your components you have to ensure that any inactive metal components are grounded via a proper large-surface earth.
 - Install a central connection between the chassis ground and the earthing/protection system.
 - Interconnect any inactive metal components via low-impedance conductors with a large cross-sectional area.
 - Avoid aluminum components. Aluminum oxidizes easily and is therefore not suitable for grounding purposes.
- Ensure that wiring is routed properly during installation.
 - Divide the cabling into different types of cable. (Heavy current, power supply, signal and data lines).
 - Install heavy current lines and signal or data lines in separate channeling or cabling trusses.
 - Install signaling and data lines as close as possible to any metallic ground surfaces (e.g. frames, metal rails, sheet metal).
- Ensure that the screening of lines is grounded properly.
 - Data lines must be screened.
 - Analog lines must be screened. Where low-amplitude signals are transferred, it may be advisable to connect the screen on one side of the cable only.
 - Attach the screening of cables to the ground rail by means of large surface connectors located as close as possible to the point of entry. Clamp cables mechanically by means of cable clamps.
 - Ensure that the ground rail has a low-impedance connection to the cabinet/cubicle.
 - Use only metallic or metallized covers for the plugs of screened data lines.
- In critical cases you should implement special EMC measures.
 - Connect snubber networks to all inductive loads that are controlled by System 200V modules.
 - Use incandescent lamps for illumination purposes inside cabinets or cubicles, do not use fluorescent lamps.
- Create a single reference potential and ensure that all electrical equipment is grounded wherever possible.
 - Ensure that earthing measures are implemented effectively. The controllers are earthed to provide protection and for functional reasons.
 - Provide a star-shaped connection between the plant, cabinets/cubicles of the System 200V and the earthing/protection system. In this way you avoid ground loops.
 - Where potential differences exist you must install sufficiently large equipotential bonding conductors between the different parts of the plant.

Screening of
cablesThe screening of cables reduces the influence of electrical, magnetic or
electromagnetic fields; we talk of attenuation.The earthing rail that is connected conductively to the cabinet diverts

interfering currents from screen conductors to ground. It is essential that the connection to the protective conductor is of low-impedance as the interfering currents could otherwise become a source of trouble in themselves.

The following should be noted when cables are screened:

- Use cables with braided screens wherever possible.
- The coverage of the screen should exceed 80%.
- Screens should always be grounded at both ends of cables. High frequency interference can only be suppressed by grounding cables on both ends.

Grounding at one end may become necessary under exceptional circumstances. However, this only provides attenuation to low frequency interference. One-sided earthing may be of advantage where:

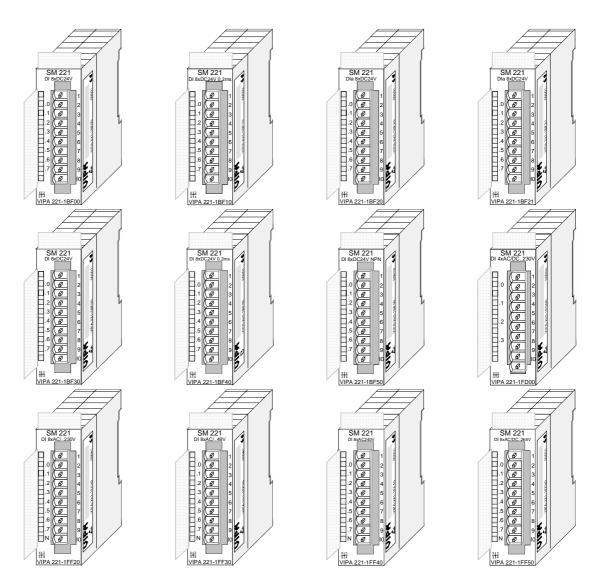
- it is not possible to install equipotential bonding conductors.
- analog signals (in the mV or µA range) are transferred.
- foil-type shields (static shields) are used.
- Always use metallic or metallized covers for the plugs on data lines for serial links. Connect the screen of the data line to the cover. Do **not** connect the screen to PIN 1 of the plug!
- In a stationary environment it is recommended that the insulation is stripped from the screened cable interruption-free and to attach the screen to the screening/protective ground rail.
- Connect screening braids by means of metallic cable clamps. These clamps need a good electrical and large surface contact with the screen.
- Attach the screen of a cable to the grounding rail directly where the cable enters the cabinet/cubicle. Continue the screen right up to the System 200V module but do **not** connect the screen to ground at this point!

Please heed the following when you assemble the system!

Where potential differences exist between earthing connections it is possible that an equalizing current could be established where the screen of a cable is connected at both ends.

Remedy: install equipotential bonding conductors

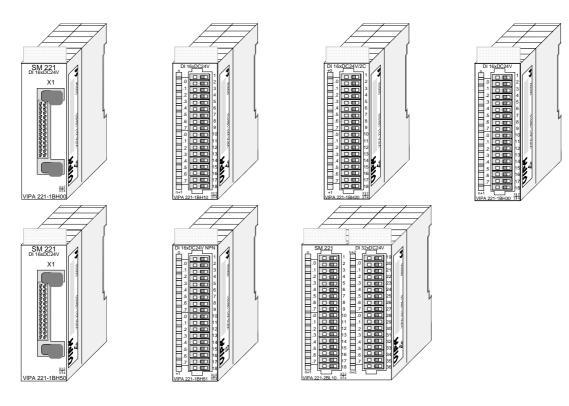
Chapter 3 Digital input modules


Overview

This chapter contains a description of the construction and the operating of the VIPA digital input modules.

Contents Topic Page Chapter 3

System overview


Input modules SM 221

Order data input modules

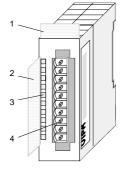
Туре	Order number	Page
DI 8xDC 24V	VIPA 221-1BF00	3-4
DI 8xDC 24V 0.2ms	VIPA 221-1BF10	3-6
DIa 8xDC 24V	VIPA 221-1BF20	3-8
DIa 8xDC 24V 0.2ms	VIPA 221-1BF21	3-10
DI 8xDC 24V - ECO	VIPA 221-1BF30	3-12
DI 8xDC 24V 0.2ms	VIPA 221-1BF40	3-14
DI 8xDC 24V NPN	VIPA 221-1BF50	3-16
DI 4xAC/DC 90230V	VIPA 221-1FD00	3-18
DI 8xAC/DC 60230V	VIPA 221-1FF20	3-20
DI 8xAC/DC 2448V	VIPA 221-1FF30	3-22
DI 8xAC 240V	VIPA 221-1FF40	3-24
DI 8xAC/DC 180265V	VIPA 221-1FF50	3-26

Continued Input modules SM 221

Orde	r data
input	modules

Туре	Order number	Page
DI 16xDC 24V with UB4x	VIPA 221-1BH00	3-28
DI 16xDC 24V	VIPA 221-1BH10	3-30
DI 16xDC 24V/1C	VIPA 221-1BH20	3-32
DI 16xDC 24V - ECO	VIPA 221-1BH30	3-42
DI 16xDC 24V NPN with UB4x	VIPA 221-1BH50	3-44
DI 16xDC 24V NPN	VIPA 221-1BH51	3-46
DI 32xDC 24V	VIPA 221-2BL10	3-48

221-1BF00 - DI 8xDC 24V

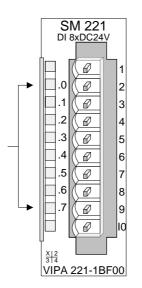

Order data	DI 8xDC 24V	VIPA 221-1BF00

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. The module has 8 channels, each one with a light emitting diode to indicate the status of the channel.

Properties

- 8 floating inputs, isolated from the backplane bus
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

Construction

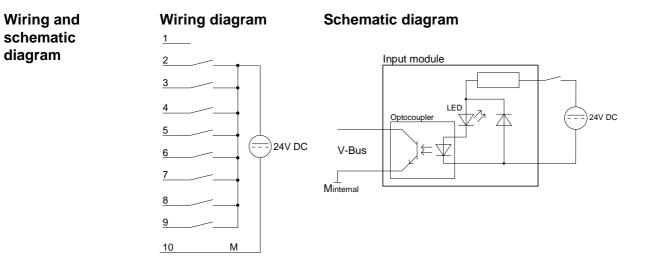

- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Connector edge

Status indicator pin assignment

LED Description

.0.....7 LEDs (green) I+0.0 to I+0.7

> A "1" signal level is recognized as of app. 15V and the respective LED is turned on



Pin	Assignment
-----	------------

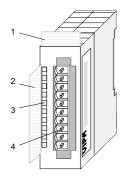
1	not connected
2	Input I+0.0

3 Input I+0.1

- 4 Input I+0.2
- 5 Input I+0.3
- 6 Input I+0.4
- 7 Input I+0.5
- 8 Input I+0.6
- 9 Input I+0.7
- 10 Ground

Technical data

Electrical data	VIPA 221-1BF00
Number of inputs	8
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	25mA
Isolation	500Vrms (field voltage to the bus
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

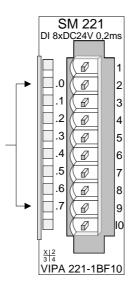

221-1BF10 - DI 8xDC 24V 0.2ms

- Order data DI 8xDC 24V 0.2ms VIPA 221-1BF10
- **Description** The digital input module accepts binary control signals from the process level and provides an electrically isolated interface to the central bus system. The module has 8 channels, each one with a light emitting diode to indicate the status of the channel.

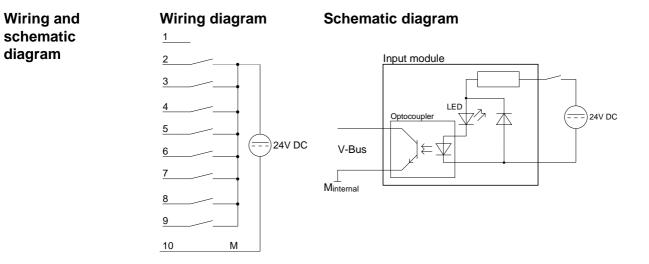
Properties

- 8 floating inputs, isolated from the backplane bus
- Delay time 0.2ms
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment


LED Description

.0.....7 LEDs (green) I+0.0 to I+0.7

A "1" signal level is recognized as of app. 15V and the respective LED is turned on

Pin	Assignment
1	not connected
2	Input I+0.0
3	Input I+0.1
4	Input I+0.2
5	Input I+0.3
6	Input I+0.4
7	Input I+0.5
8	Input I+0.6
9	Input I+0.7
10	Ground

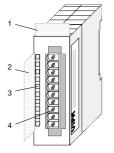
Technical data

Electrical data	VIPA 221-1BF10
Number of inputs	8
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	0.2ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	25mA
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1BF20 - DIa 8xDC 24V

Order data Dla 8xDC 24V VIPA 221-1BF20

Description The digital input module accepts the binary control signals from the process level and provides an electrically isolated interface to the central bus system.


All inputs are configurable as alarms. With the rising edge of the input, the alarm is activated. The alarm calls the OB 40 in the CPU. If this OB isn't available, the OB 85 is called. If this OB is also not programmed, the CPU switches to STOP.

The module has 8 channels, each one with a light emitting diode to indicate the status of the channel.

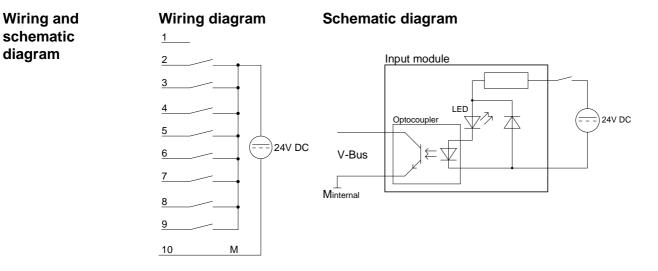
Properties

- 8 alarm inputs, isolated from the backplane bus
- nominal input voltage DC 24V
- suited for urgent signals (switches and proximity switches)
- Status indicator for each channel by means of an LED

Construction

- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment


LED Description

.0.....7 LEDs (green) I+0.0 to I+0.7 A "1" signal level is recognized as of app.

15V and the respective LED is turned on

Pin Assignm	ent
-------------	-----

1	not connected
2	Input I+0.0
3	Input I+0.1
4	Input I+0.2
5	Input I+0.3
6	Input I+0.4
7	Input I+0.5
8	Input I+0.6
9	Input I+0.7
10	Ground

schematic

diagram

Note!

The module may be deployed in the System 200V starting from CPU firmware versions:

CPU 21x:	Version 2.2.1
CPU 24x:	Version 3.0.6

The deployment with lower firmware versions causes error messages and a CPU switch to STOP!

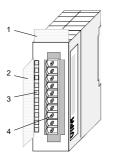
Technical data	Electrical data	VIPA 221-1BF20
	Number of alarm inputs	8
	Nominal input voltage	DC 24V (20.4 28.8V)
	Signal voltage "0"	0 5V
	Signal voltage "1"	15 28.8V
	Input filter time delay	3ms
	Input current	typ. 7mA
	Power supply	DC 5V via backplane bus
	Current consumption via backplane bus	25mA
	Isolation	500Vrms (field voltage to the bus)
	Status indicator	via LEDs located on the front
	Programming specifications	
	Input data	1byte
	Output data	-
	Parameter data	-
	Diagnostic data	-
	Dimensions and weight	
	Dimensions (WxHxD) in mm	25.4x76x88
	Weight	50g

221-1BF21 - DIa 8xDC 24V 0.2ms

Order data Dla 8xDC 24V 0.2ms

VIPA 221-1BF21

DescriptionThe digital input module accepts the binary control signals from the
process level and provides an electrically isolated interface to the central
bus system.All inputs are configurable as alarms. With the rising edge of the input, the

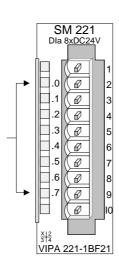

alarm is activated. The alarm calls the OB 40 in the CPU. If this OB isn't available, the OB 85 is called. If this OB is also not programmed, the CPU switches to STOP.

The module has 8 channels, each one with a light emitting diode to indicate the status of the channel.

Properties

- 8 alarm inputs, isolated from the backplane bus
- nominal input voltage DC 24V
- suited for urgent signals (switches and proximity switches), delay time 0.2ms
- Status indicator for each channel by means of an LED

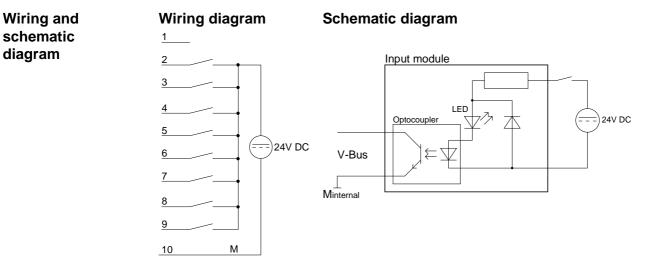
Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description

.0.....7 LEDs (green)


I+0.0 to I+0.7 A "1" signal level is recognized as of app. 15V and the respective LED is turned on

Pin Assignment

2	Input	l+0.0
-		

- 3 Input I+0.1
- 4 Input I+0.2
- 5 Input I+0.3
- 6 Input I+0.4
- 7 Input I+0.5
- 8 Input I+0.6
- 9 Input I+0.7
- 10 Ground

schematic

diagram

Note!

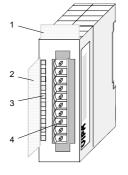
The module may be deployed in the System 200V starting from CPU firmware versions:

CPU 21x:	Version 2.2.1
CPU 24x:	Version 3.0.6

The deployment with lower firmware versions causes error messages and a CPU switch to STOP!

Technical data	Electrical data	VIPA 221-1BF21
	Number of alarm inputs	8
	Nominal input voltage	DC 24V (20.4 28.8V)
	Signal voltage "0"	0 5V
	Signal voltage "1"	15 28.8V
	Input filter time delay	0.2ms
	Input current	typ. 7mA
	Power supply	DC 5V via backplane bus
	Current consumption via backplane bus	25mA
	Isolation	500Vrms (field voltage to the bus)
	Status indicator	via LEDs located on the front
	Programming specifications	
	Input data	1byte
	Output data	-
	Parameter data	-
	Diagnostic data	-
	Dimensions and weight	
	Dimensions (WxHxD) in mm	25.4x76x88
	Weight	50g

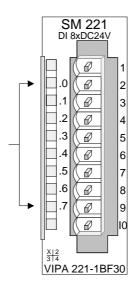
221-1BF30 - DI 8xDC 24V - ECO


Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. The module has 8 channels, each one with a light emitting diode to indicate the status of the channel.

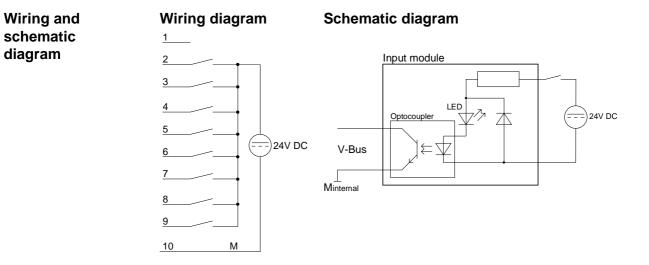
VIPA 221-1BF30

Properties

- 8 floating inputs, isolated from the backplane bus
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED


Construction

- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Connector edge


Status indicator pin assignment

- LED Description
- .0.....7 LEDs (green) I+0.0 to I+0.7 A "1" signal level is recognized as of app. 15V and the respective LED is turned on

Pin Assignment

- 1 not connected
- 2 Input I+0.0
- 3 Input I+0.1
- 4 Input I+0.2
- 5 Input I+0.3
- 6 Input I+0.4
- 7 Input I+0.5
- 8 Input I+0.6
- 9 Input I+0.7
- 10 Ground

Electrical data	VIPA 221-1BF30
Number of inputs	8
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption	25mA
via backplane bus	
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

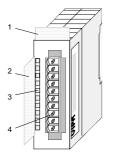
221-1BF40 - DI 8xDC 24V 0.2ms

Order data DI 8xDC 24V 0.2ms

VIPA 221-1BF40

Description The digital input module accepts the binary control signals from the process level and provides an electrically isolated interface to the central bus system. This module is only suited for central deployment together with a CPU. Here the module detects and stores the rising edges of input pulses with a duration > 0.2ms.

At the cycle control point the status information of the module is transferred to the process image and then reset in the module again by the CPU.

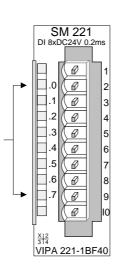

Since the status information exist over one cycle, a cyclically processing is necessary. Here the module must always be mapped to an address within the process image.

The module has 8 input channels. The status of the input signals is indicated by light emitting diodes.

Properties • 8 inputs, isolated from the backplane bus

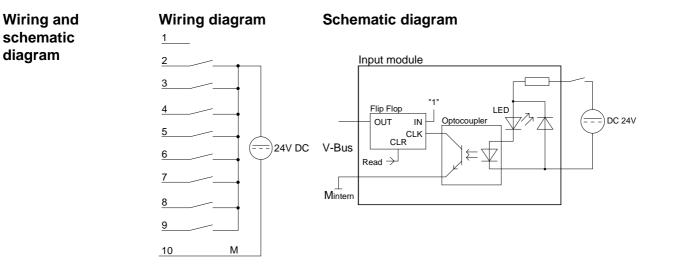
- nominal input voltage DC 24V
- Suitable for fast, short signals (pulse)
- Status indicator for each channel by means of an LED

Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description


.0.....7 LEDs (green)

I+0.0 to I+0.7 A "1" signal level is recognized as of app. 15V and the respective LED is turned on

Pin Assignment

- 1 not connected
- 2 Input I+0.0
- 3 Input I+0.1
- 4 Input I+0.2
- 5 Input I+0.3
- 6 Input I+0.4
- 7 Input I+0.5
- 8 Input I+0.6
- 9 Input I+0.7
- 10 Ground

Note!

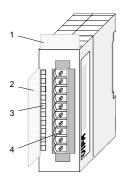
System dependent the module should only be used in a central system! The module is always to be mapped to an address within the process image.

Technical data	Electrical data	VIPA 221-1BF40
	Number of alarm inputs	8
	Nominal input voltage	DC 24V (20.4 28.8V)
	Signal voltage "0"	0 5V
	Signal voltage "1"	15 28.8V
	Input filter time delay	0.2ms
	Input current	typ. 7mA
	Power supply	DC 5V via backplane bus
	Current consumption via backplane bus	25mA
	Isolation	500Vrms (field voltage to the bus)
	Status indicator	via LEDs located on the front
	Programming specifications	
	Input data	1byte
	Output data	-
	Parameter data	-
	Diagnostic data	-
	Dimensions and weight	
	Dimensions (WxHxD) in mm	25.4x76x88
	Weight	50g

221-1BF50 - DI 8xDC 24V NPN

DI 8xDC 24V NPN Order data

VIPA 221-1BF50

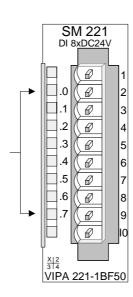

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. The module has 8 channels, each one with a light emitting diode to indicate the status of the channel. The input becomes active when it is connected to ground.

8 floating inputs, isolated from the backplane bus

- Active low input (signal level "1" when input is at ground)
- DC 24V nominal input voltage
- · Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

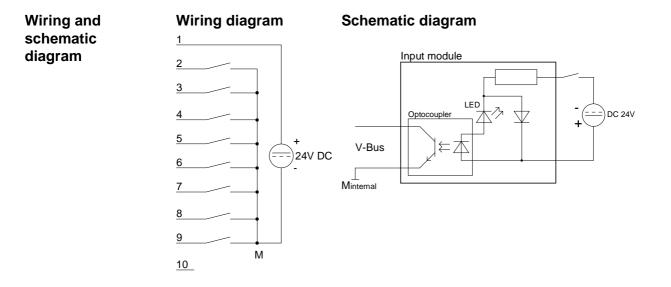
Construction

Properties


- Label for module description [1]
- [2] Label for the bit address with description
- LED status indicator [3]
- [4] Edge connector

Status indicator pin assignment

LED Description


.0....7 LEDs (green) I+0.0 to I+0.7

when an input is at ground a "1" is detected and the respective LED is turned on

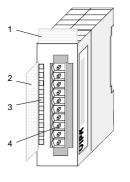
Pin	Assignment
	Abolginnon

1	+DC 24V
2	Input I+0.0
3	Input I+0.1
4	Input I+0.2
5	Input I+0.3
6	Input I+0.4
7	Input I+0.5
8	Input I+0.6
9	Input I+0.7
10	reserved

Electrical data	VIPA 221-1BF50
Number of inputs	8
Nominal input voltage	DC 24V (20.4 28.8V)
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	10mA
Power dissipation	1.5W
Isolation tested with	DC 500V
Isolation	
- between channels and bus	yes
- between channels	no
Length of cable	
- shielded	1000m
- unshielded	600m
Number simultaneously trigger able inputs	
- horizontal config. up to 60°C	8
- vertical config. up to 40°C	8
Status indicator	via LEDs located on the front
Data for selecting a sensor	
Input voltage	
- Rated value	DC 24V (20.4 28.8V)
- for signal "1"	0 5V ¹⁾
- for signal "0"	15 28.8V ¹⁾
Input current	
- for signal "1"	7mA
Input filter delay	3ms
Connection of two-wire Beros	possible
 permitted bias current 	1.5mA
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostics data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

¹⁾ Reference potential is ground of DC 24V.

221-1FD00 - DI 4xAC/DC 90...230V

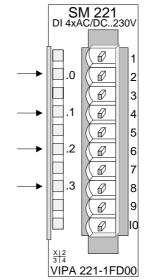

Order data DI 4xAC/DC 90...230V VIPA 221-1FD00

DescriptionThe digital input module accepts binary control signals from the process
and provides an electrically isolated interface to the central bus system.The module has 4 channels and the respective status is displayed by
means of LEDs.

Properties

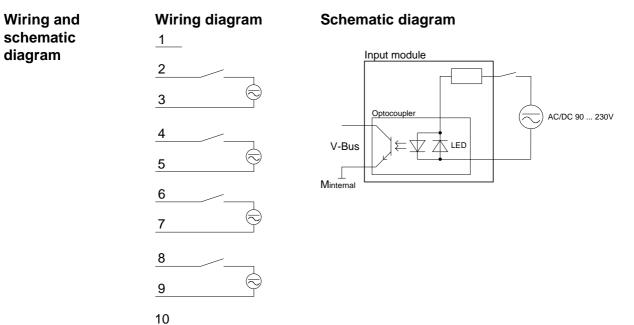
- 4 floating inputs, isolated from the backplane bus and from each other
 - Status indicator for each channel by means of an LED
 - Nominal input voltage 90 ... 230V AC/DC

Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment


LED	Description
-----	-------------

- .0 LEDs (green)
- .1 I+0.0 to I+0.3
- .2 from app. DC 80V or AC
- .3 65V (50Hz) a signal "1" is detected and the respective LED is turned on

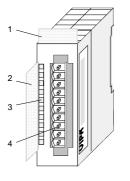
Pin Assignment

- 1 not connected
- 2 I+0.0
- 3 Neutral conductor I+0.0
- 4 I+0.1
- 5 Neutral conductor I+0.1
- 6 I+0.2
- 7 Neutral conductor I+0.2
- 8 I+0.3
- 9 Neutral conductor I+0.3
- 10 not connected

Electrical data	VIPA 221-1FD00
Number of inputs	4
Nominal input voltage	AC/DC 90 230V
Signal voltage "0"	AC/DC 0 35V
Signal voltage "1"	AC/DC 90 230V
Input filter time delay	25ms
Frequency of input voltage	50 60Hz
Input resistance	136kΩ
Power supply	DC 5V via backplane bus
Current consumption	40mA
via backplane bus	
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte (bit 0 bit 3)
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1FF20 - DI 8xAC/DC 60...230V

Order data DI 8xAC/DC 60...230V VIPA 221-1FF20

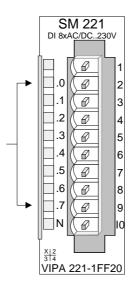

DescriptionThe digital input module accepts binary control signals from the process
and provides an electrically isolated interface to the central bus system.The module has 8 channels, each one with a light emitting diode to indicate
the status of the channel.

Properties

• 8 inputs, isolated from the backplane bus

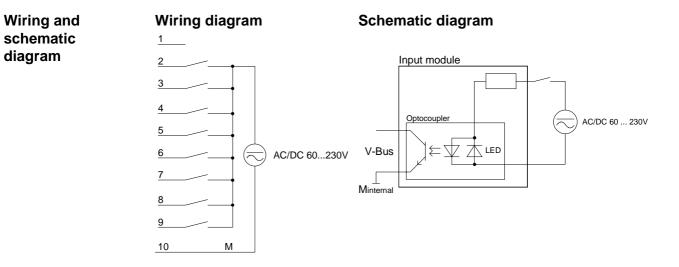
- Nominal input voltage 60 ... 230V AC/DC
- Status indicator for each channel by means of an LED

Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment


LED Description

.0.....7 LEDs (green) I+0.0 to I+0.7 from app. DC 55V or AC 45V (50Hz) a signal "1" is detected and the respective LED is turned on

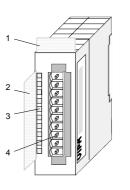
Pin Assignment

- 1 not connected
- 2 Input I+0.0
- 3 Input I+0.1
- 4 Input I+0.2
- 5 Input I+0.3
- 6 Input I+0.4
- 7 Input I+0.5
- 8 Input I+0.6
- 9 Input I+0.7
- 10 Neutral conductor

Electrical data	VIPA 221-1FF20
Number of inputs	8
Nominal input voltage	AC/DC 60 230V
Signal voltage "0"	AC/DC 0 35V
Signal voltage "1"	AC/DC 60 230V
Input filter time delay	25ms
Frequency of input voltage	50 60Hz
Input resistance	136kΩ
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	60mA
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1FF30 - DI 8xAC/DC 24...48V

Order data DI 8xAC/DC 24...48V VIPA 221-1FF30

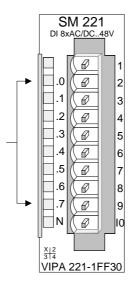

DescriptionThe digital input module accepts binary control signals from the process
and provides an electrically isolated interface to the central bus system.The module has 8 channels, each one with a light emitting diode to indicate
the status of the channel.

Properties

• 8 floating inputs, isolated from the backplane bus

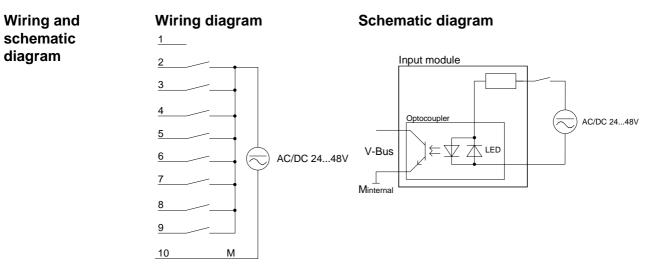
- Nominal input voltage AC/DC 24 ... 48V
- Status indicator for each channel by means of an LED

Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

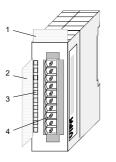

LED Description

.0.....7 LEDs (green) I+0.0 to I+0.7 from app. DC 14V or AC 12V (50Hz) a signal "1" is detected and the respective LED is turned on

Pin Assignment

- 1 not connected
- 2 Input I+0.0
- 3 Input I+0.1
- 4 Input I+0.2
- 5 Input I+0.3
- 6 Input I+0.4
- 7 Input I+0.5
- 8 Input I+0.6
- 9 Input I+0.7
- 10 Neutral conductor

Electrical data	VIPA 221-1FF30
Number of inputs	8
Nominal input voltage	AC/DC 24 48V
Signal voltage "0"	AC/DC 0 8V
Signal voltage "1"	AC/DC 18 48V
Input filter time delay	25ms
Frequency of input voltage	50 60Hz
Input resistance	16.4kΩ
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	60mA
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

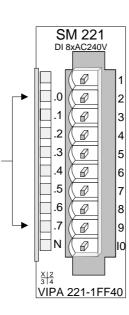

221-1FF40 - DI 8xAC 240V

Order data	DI 8xAC 240V	VIPA 221-1FF40
Description	The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system.	
	The module has 8 channels the status of the channel.	, each one with a light emitting diode to indicate
In a defined voltage range modified (Hysterese).		, the signal state of the respective input is not
- //		

Properties • 8 floating inputs, isolated from the backplane bus

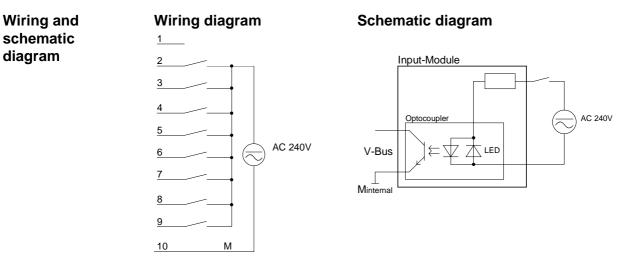
- Nominal input voltage AC 240V
- Status indicator for each channel by means of an LED
- Hysterese
- Current consumption 20mA per channel

Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment


LED Description

.0.....7 LEDs (green) I+0.0 to I+0.7 from app. AC 190 V (50Hz) the signal "1" is detected and the respective LED is turned on

Pin	Assignment		
1	not connected		
2	Input I+0.0		
3	Input I+0.1		
4	Input I+0.2		
5	Input I+0.3		
6	Input I+0.4		
7	Input I+0.5		

- 7 Input I+0.58 Input I+0.6
- 9 Input I+0.7
- 10 Neutral conductor

Note!

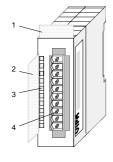
This module is specified for voltages of max. AC 260V.

If inductive loads occur on the network, this load has to be filtered either directly at the module or at the according device, for example by using a snubber network.

ca. 50g

Technical data	Electrical data	VIPA 221-1FF40
	Number of inputs	8
	Nominal input voltage	AC 240V
	Current consumption per channel	20mA
	Signal voltage "0"	AC 070V
	Hysterese	AC 90 160V
	Signal voltage "1"	AC 190 260V
	Input filter time delay	25ms
	Frequency of input voltage	50Hz
	Input resistance	136kΩ
	Power supply	DC 5V via backplane bus
	Current consumption via backplane bus	60mA
	Isolation	500Vrms (field voltage to the bus)
	Status indicator	via LEDs located on the front
	Programming specifications	
	Input data	1byte
	Output data	-
	Parameter data	-
	Diagnostic data	-
	Dimensions and weight	
	Dimensions (WxHxD) in mm	25.4x76x88

Weight


221-1FF50 - DI 8xAC/DC 180...265V

- Order data DI 8xAC/DC 180...265V VIPA 221-1FF50
- DescriptionThe digital input module accepts binary control signals from the process
and provides an electrically isolated interface to the central bus system.The module has 8 channels, each one with a light emitting diode to indicate
the status of the channel.

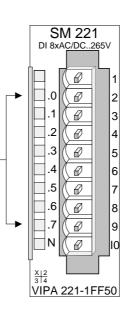
Properties

- 8 floating inputs, isolated from the backplane bus
- Nominal input voltage AC/DC 180...265V
- Status indicator for each channel by means of an LED

Construction

- [1] Label for module description
- [2] Label for the bit address with description

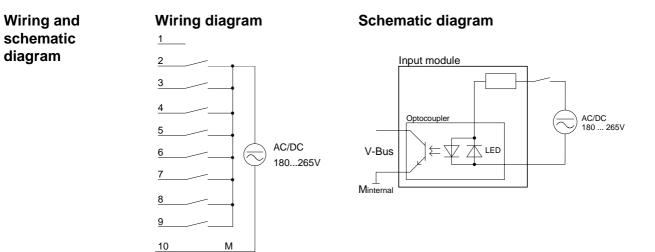
Pin


- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description

.0.....7 LEDs (green)


I+0.0 to I+0.7 from app. DC 150V resp. AC 170V (50Hz) the signal "1" is detected and the respective LED is turned on

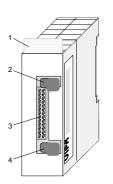
1	not connected
2	Input I+0.0
3	Input I+0.1
4	Input I+0.2
5	Input I+0.3
6	Input I+0.4
7	Input I+0.5

Assignment

- 8 Input I+0.6
- 9 Input I+0.7
- 10 Neutral conductor

Electrical data	VIPA 221-1FF50
Number of inputs	8
Nominal input voltage	AC/DC 180265V
Signal voltage "0"	AC/DC 0150V
Signal voltage "1"	AC/DC 180 265V
Input filter time delay	25ms
Frequency of input voltage	50 60Hz
Input resistance	136kΩ
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	80mA
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1BH00 - DI 16xDC 24V with UB4x


Order data DI 16xDC 24V VIPA 221-1BH00

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. This module requires an UB4x-converter. It has 16 channels that indicate the respective status via LEDs on the UB4x. The module has to be connected to the converter module (DEA-UB4x) by means of a flattened round cable (DEA-KB91C).

• 16 inputs, isolated from the backplane bus

- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of a LED located on the conversion module UB4x

Construction

- [1] Label for module description
- [2] Clip
- [3] Recessed connector for the interface to a conversion module UB4x via the flattened round cable
- [4] Clip

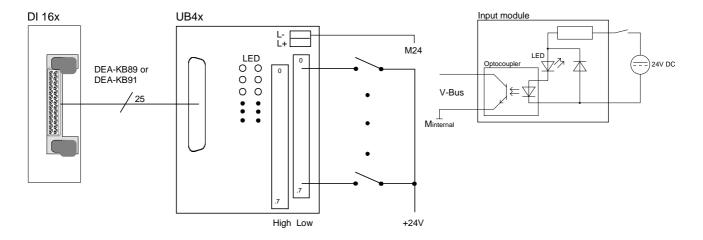
Status indicator on UB4x LED Description

0....15 LEDs (yellow) I+0.0 to I+0.7 High I+0.0 to I+0.7 Low A "1" signal level is recognized as of app. 15V and the respective LED is turned on

L+ L- LED (green) Supply voltage available

Pin assignment module

Pin


Connector

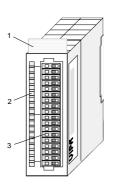
26	25	2326	Supply voltage +DC 24V
		22	Input I+0.0
- A A			
l a a			
		15	Input I+0.7
		14	Input I+1.0
\square			
4 7 7	3	7	Input I+1.7
2	1	16	Supply voltage Ground

Assignment

Interface to UB4x

Schematic diagram module

Electrical data	VIPA 221-1BH00
Number of inputs	16
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption	35mA
via backplane bus	
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the UB4x
Programming specifications	
Input data	2byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g


LEDs.

221-1BH10 - DI 16xDC 24V

Order data	DI 16xDC 24V	VIPA 221-1BH10
Description	The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. It has 16 channels that indicate the respective status by means of LEDs.	

- **Properties**
- 16 inputs, isolated from the backplane bus
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

Construction

- Label for module description [1]
- LED status indicator [2]

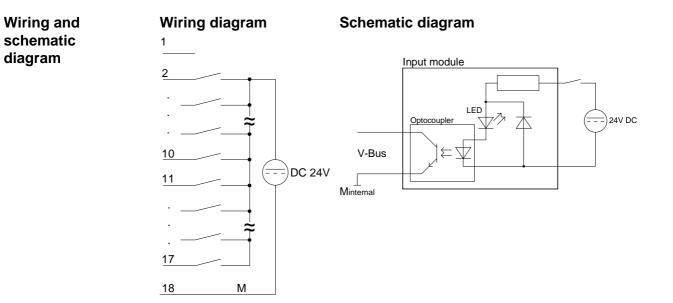
Pin

18

Assignment

Edge connector [3]

Status indicator connector assignment


Description

LED

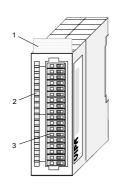
	Description			Assignment
.07	LEDs (green) I+0.0 to I+0.7 A "1" signal level is recognized as of app. 15V and the respective LED is turned on	DI 16xDC24V n 1 2 1 1 2 1 2 3 4 5 6 8 7 6 8 7 9 0 1 1 2 3 4 5 6 8 7 9 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3	not connected Input I+0.0 Input I+0.1 Input I+0.7 Input I+1.0 Input I+1.6 Input I+1.7

VIPA 221-1BH10 3 4

Ground

Electrical data	VIPA 221-1BH10
Number of inputs	16
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	40mA
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	2byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1BH20 - DI 16xDC24V/1C


Order data	DI 16xDC24V/1C	VIPA 221-1BH20
------------	----------------	----------------

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. It has 16 channels that indicate the respective status by means of LEDs. Additionally, the first two channels may head for counters.

Properties

- 16 inputs, isolated from the backplane bus
- 2 inputs (I+0.0 and I+0.01) are configurable as one counter, frequency or period measurement
- Pull up abbr. pull down resistors are inside, so sensors with positive and negative logic can be connected
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

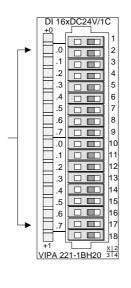
Construction

- [1] Label for module name
- [2] LED status indicator

Pin

17

18

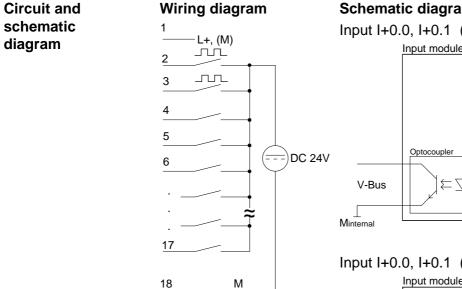

[3] Edge connector

Status indicator connector assignment

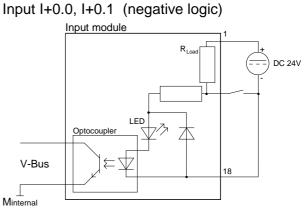
LED Description

.07 LEDs (green)

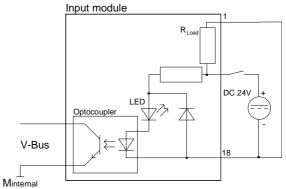
I+0.0 to I+1.7 A "1" signal level is recognized as of app. 15V and the respective LED is turned on

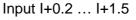

1	L+ DC 24V or Ground ^{*)}
2	Input I+0.0 / Counter (A)
3	Input I+0.1 / Counter (B)
4	Input I+0.2
•	
9	Input I+0.7
10	Input I+1.0

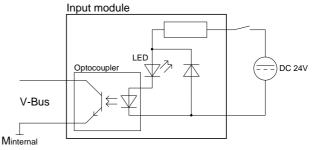
Input I+1.7


Ground

Assignment

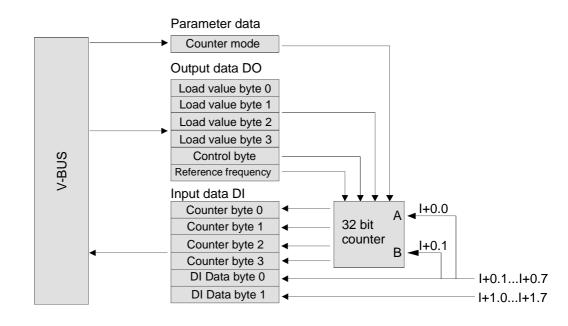

*) DC 24V or Ground to connect sensors with positive or negative logic at I+0.0 or I+0.1




Schematic diagram

Input I+0.0, I+0.1 (positive logic)

Note!


The inputs I+0.0 and I+0.1 have also internal pull up (-down) resistors, which lead to pin 1 of the connector strip.

You can connect the sensors with negative logic output directly to the inputs I+0.0 and I+0.1. Here you have to supply pin 1 with DC 24V.

Connect pin 1 to Ground (bridge to pin 18) when I+0.0 and I+0.1 are used as "normal" inputs with positive logic.

Overview The module is a 16bit digital input module for System 200V combined with a one-channel 32bit counter.

Inputs I+0.0 and I+0.1 are used as 'normal' process inputs and as counter inputs (signal A and signal B) simultaneously.

By writing *output data DO* to the module, you may preset a counter value with a *load value* as well as a *reference frequency*. The activation of this values takes place by means of the *control byte*.

With a read access on the *input data DI* you obtain the current counter value.

The counting is started res. stopped via the *control byte* (software gate).

There are 5 counter functions supported. The appropriate counter function is set by parameterization.

Counter activation via software gate Many applications require that the count can be started or stopped at a defined time depending on other events. This starting and stopping of the count process is done via a software gate function. If the gate is opened, count pulses can reach the counter and the count is started. If the gate is closed, count pulses can no longer reach the counter and the count is stopped.

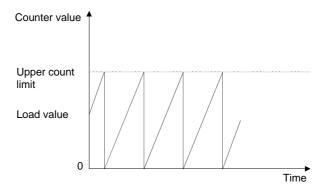
The software gate is controlled via the bits START and STOP in the Control Byte. Setting the bit START will open the software gate whereas setting the bit STOP will close the software gate.

Count range / Limit values The counter module can count up and down. The count value is 32Bit wide and is to be interpreted as of type unsigned integer. Therefore the count limits are given as:

Lower count limit	Upper count limit
0	+ 4.294.967.295 (2 ³² – 1)

Load value It is possible to specify a load value for the counter. After loading the counter starts counting up res. down from this new value to the upper res. lower limit value. After receiving a new counting pulse, the counter jumps to the lower (counting up) res. upper limit (counting down) and starts the counting again.

In the operation mode "Frequency Measurement" the load value is used to define the time window of the measurement.


The load mechanism is controlled via the bit LOAD in the control byte.

ContinuousIn all counter modes, a continuous counter function is used as described in
the following paragraphs and as shown in figure.

If the counter reaches the upper count limit when counting up and a further count pulse is received, the counter jumps to the lower count limit and starts to add the count pulses again, meaning it counts continuously.

If the counter reaches the lower count limit when counting down and a further count pulse is received, the counter jumps to the upper count limit and continues to count down from there.

The count range in all modes is 0 to +4.294.967.295 and cannot be changed. The counter starts to count at 0 when a complete restart (Power-On Reset or VBUS-Reset) is executed on the module or the counter is cleared by setting bit CLEAR in the control byte.

Maximum counter frequency	At the designation of maximum counter frequency, two types of indication are distinguished:
	Maximum impulse frequency

The maximum impulse frequency is the maximum frequency the adjacent signal may have, i.e. the maximum frequency at witch the impulses arrive at the module. At this module the maximum impulse frequency is 100Hz.

• *Maximum counter frequency* The maximum counter frequency is the frequency at witch can be internally counted to the maximum. At this module the maximum impulse frequency is 400Hz. **Module access** For input and output data, the module occupies each 6byte in the address area. For setting the counter mode there are 1byte parameter data at disposal.

Loading the counter res. presetting of a reference frequency is via a control byte by typing the wanted value into the output address area and setting the bit 2 of the control byte to activate the counter.

You may see the counter value and the state of the inputs in the input address area. Also during count operation you may call all input channels.

Input dataInput bytes 0 to 3 are assigned to the 32bit counter value whereas bytes 4DI data bytesand 5 are assigned to the 16Bit digital inputs.

Byte	Bit 7 Bit 0
0	Counter value byte 0
1	Counter value byte 1
2	Counter value byte 2
3	Counter value byte 3
4	DI Data byte 0 (I+0.7 I+0.0)
5	DI Data byte 1 (I+1.7 I+1.0)

Output data Byte 0 to 3 are assigned to a load value according to the selected counter mode. Byte 4 is used as control byte for the counter. Byte 5 selects a reference frequency for the counter modes "Frequency Measurement" and "Period Measurement".

Byte	Bit 7 Bit 0
0	Load value byte 0
1	Load value byte 1
2	Load value byte 2
3	Load value byte 3
4	Control byte
5	Reference Frequency

Control byte	Bit	Function
	0	1 = START counter (the software gate is open)
	1	1 = STOP counter (the software gate is closed)
	2	1 = LOAD counter
	3	1 = CLEAR counter
	7 4	reserved

Reference	Value	Reference frequency
frequency	00h	16 MHz
	01h	8 MHz
	02h	4 MHz
	03h	1 MHz
	04h	100 kHz
	05h	10 kHz
	06h	1 kHz
	07h	100 Hz
	others	not allowed

HB97E - SM - Rev. 11/30

Parameter data The module has 3byte parameter data for selecting the counter mode and configuring the digital input filters.

Byte	Bit 7 Bit 0
0	Counter function
	00h: Quadruple Pulse Evaluation
	01h: Pulse and Direction Evaluation
	02h: Clock Up / Clock Down Evaluation
	03h: Frequency Measurement
	04h: Period Measurement
	others: not allowed
1	Filter (Divider 0) value: 0 255
2	Filter (Divider 1) value: 0 255

Counter function A description of the counter functions can be found at the next page.

FilterThe counter inputs are debounced by means of digital filters, which can be
adjusted via parameter Filter (Divider 0 and Divider 1).
So that an pulse can be evaluated as a counting pulse, this must be
present longer than the parameterized filter value. Shorter pulses are not
evaluated.
For calculation of the pulse time the following formula is to be used:
 $T_{Pulse} \ge (Divider \ 0 + 1)^* (Divider \ 1 + 1)^* 2.5 \mu s$
Example:Divider \ 0 = 3, Divider \ 1 = 0

 $T_{Pulse} \ge (3+1)^*1^*2.5\mu s = 10\mu s$

In this way filter for a pulse time of $2.5 \dots 163840 \mu s$ can be parameterized.

Example (default:) Divider 0 = 0, Divider 1 = 0

 $T_{Pulse} \ge 1*1*2.5\mu s = 2.5\mu s$

By default (after Reset) a filter width of 2.5µs is used.

functions Quadruple Pulse Evaluation (00h) Quadruple evaluation means that the rising and falling edges of A and B are evaluated; whether up or down count pulses are generated depends on which channel hurries first. In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: If channel A hurries in front, the counter counts up. I+0.1 as channel B: If channel B hurries in front, the counter counts down. SW-Gate Signal A Up count pulses Down count pulses Up count pulses In this counting mode I+0.0 and I+0.1 have the following function: I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate Signal A Signal A Signal A Up count pulses Up count pulses
Pulse and Direction Evaluation (01h) I+0.0 as channel A: If channel A hurries in front, the counter counts down. SW-Gate
I+0.1 as channel B: If channel B hurries in front, the counter counts down. SW-Gate Signal A Signal B Up count pulses Down count pulses up down Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate Signal A Signal B Signal A
SW-Gate Signal A Signal A Signal B Up count pulses Up count pulses Down count pulses up up down Pulse and Direction Evaluation (01h) Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate Signal A Signal B
Signal A Signal B Signal B Up count pulses Down count pulses up up down Pulse and Direction Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) Signal A Signal A Signal B
Signal B Image: Signal B Signal B Image: Signal B Up count pulses Image: Down count pulses Down count pulses Image: Up count pulses up down Pulse and Direction Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate Signal A Signal B
Up count pulses
Pulse and Direction Evaluation (01h) Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) Signal A Signal B
up down Pulse and Direction Evaluation (01h) Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate Signal A Signal B Signal B
Pulse and Direction Evaluation (01h) Every rising edge of A is evaluated. Channel B defines the counter direction. In this counting mode I+0.0 and I+0.1 have the following function: In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) Signal A Signal B
Direction direction. Evaluation (01h) In this counting mode I+0.0 and I+0.1 have the following function: I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate Signal A Signal B
(01h) I+0.0 as channel A: Clock pulse for the counter at rising edge. I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate
I+0.1 as channel B: Defines the counter direction (0 = up, 1 = down) SW-Gate
Signal A Signal B
Signal B
Up count pulses
Down count pulses
up down
Clock Up / ClockThe rising edges of channel A and B are evaluated. The counter isDown Evaluationincremented with every rising edge of A and decremented with every rising edge of B.
In this counting mode I+0.0 and I+0.1 have the following function:
I+0.0 as channel A: Clock up pulse for the counter at rising edge. I+0.1 as channel B: Clock down pulse for the counter at rising edge.
SW-Gate
Signal A
Signal B
Signal B
Signal B Up count pulses Down count pulses

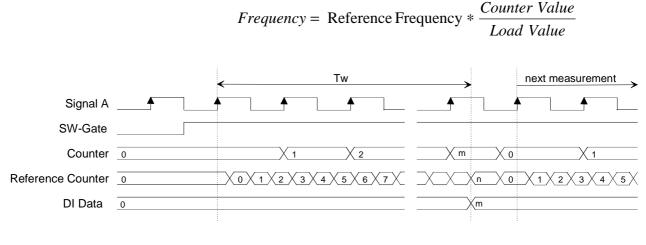
Frequency measurement (03h) In frequency measurement mode, the module counts the number of rising edges of channel A received within a specified time window.

Channel B is not used in this mode.

The time window T_W is specified indirectly by selecting a *reference frequency* with DO byte 5 and defining a *load value* in DO bytes 0 to 3:

$$T_W = \frac{1}{\text{Reference Frequency}} * Load Value$$

By setting the Bit 2 of the *control byte*, the time window is transferred. When the counter is enabled (software gate is open), the reference counter is started with the first rising edge of channel A and is incremented with every rising edge of the reference clock.

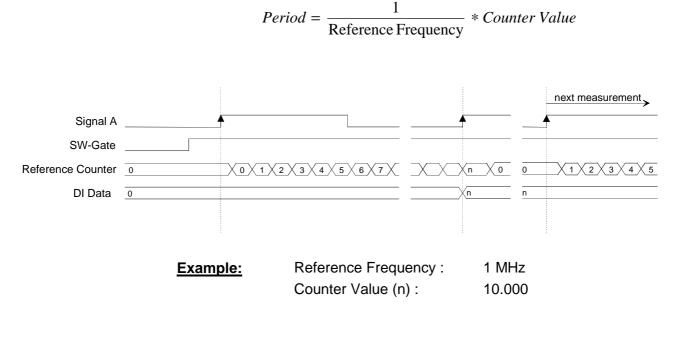

When the reference counter reaches the load value (time T_W has expired), the current counter value is copied to DI byte 0 to 3 and can be read.

Then the counter and the reference counter are cleared automatically and the next frequency measurement is started with the next rising edge of channel A. If there aren't at least two rising edges of channel A within the time window $T_{\rm W}$, the counter value will be read as 0 for this measurement.

Frequency measurement is started and ended by using the software gate that is as long as the software gate is open, the frequency of channel A is measured.

The counter can be cleared at any time by CLEAR='1' in the *control byte* while the *load value* stays valid until a new value is loaded or a Reset is detected.

The recent frequency can be computed by using the following formula:


Example:	Reference Frequency :	1 MHz
	Load Value (n) :	1.000.000
	Counter Value (m) :	10.000

Frequency = $1 MHz * \frac{10.000}{1.000.000} = 10 kHz$

Period measurement (04h) With very small frequencies, it is convenient to measure the period instead of the frequency. In the operating mode "Period Measurement", the time between two rising edges of channel A is measured by counting the number of rising edges of the selected reference clock occurring between two rising edges of channel A. Channel B is not used in this mode.

Period measurement is started and ended by using the software gate, that is: as long as the software gate is open the period of channel A is measured continuously. The counter can be cleared at any time by CLEAR="1" in the *control byte*. The period measurement will then start again with the next rising edge of channel A.

The recent signal period can be computed by using the following formula:

$$Period = \frac{1}{1 \,\mathrm{MHz}} * 10.000 = 10 \,\mathrm{ms}$$

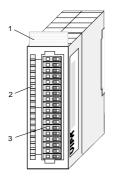
Note!

The counter value stays valid until the next measurement is completed or the counter is cleared.

If the next measurement is never completed (e.g. because the second rising edge of channel A never occurs), you will always see the "old" counter value and not the current value of the Reference Counter.

Technical data	Electrical data	VIPA 221-1BH20
	Number of inputs	16
	Counter	1 (2 inputs A, B)
	Rated input voltage	DC 24V (20.4 28.8V)
	Signal voltage "0"	0 5V
	Signal voltage "1"	15 28.8V
	Input filter time delay	3ms
	Input filter counter	100µs
	Max. impulse frequency	100kHz
	Input current	typ. 7mA
	Power supply	DC 5V via backplane bus
	Current consumption via backplane bus	85mA
	Isolation	500Vrms (field voltage to the bus)
	Status indicator	via LEDs located on the front
	Programming specifications	
	Input data	6byte
	Output data	6byte
	Parameter data	3byte
	Diagnostic data	-
	Dimensions and weight	
	Dimensions (WxHxD) in mm	25.4x76x88
	Weight	50g

221-1BH30 - DI 16xDC 24V - ECO


Order data	DI 16xDC 24V	VIPA 221-1BH30

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. It has 16 channels that indicate the respective status by means of LEDs.

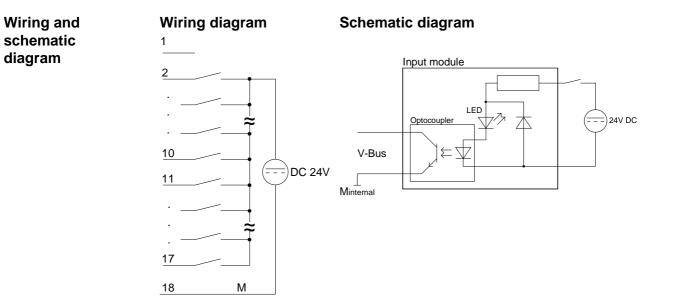
Properties

- 16 inputs, isolated from the backplane bus
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

Construction

[1] Label for module description

18

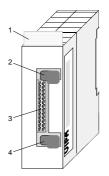

- [2] LED status indicator
- [3] Edge connector

Status indicator connector assignment

LED	Description		Pin	Assignment
.07	LEDs (green) I+0.0 to I+1.7 A "1" signal level is recognized as of app. 15V and the respective LED is turned on	DI 16xDC24V 1 1 1 1 2 1 2 1 2 3 2 4 3 5 .4 6 .5 7 .6 8 9 .0 10 11 2 3 4 5 .4 .5 .5 .7 .6 .8 9 .0 .0 .1 .1 .4 .5 .5 .5 .7 .6 .5 .5 .7 .6 .5 .7 .6 .5 .7 .6 .5 .7 .6 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .7 .6 .5 .5 .5 .7 .6 .5 .5 .5 .7 .6 .5 .5 .5 .5 .7 .6 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	1 2 3 9 10	Not connected Input I+0.0 Input I+0.1 Input I+0.7 Input I+1.0 Input I+1.7

VIPA 221-1BH30

Ground


Electrical data	VIPA 221-1BH30
Number of inputs	16
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	45mA
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	2byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1BH50 - DI 16xDC 24V NPN with UB4x

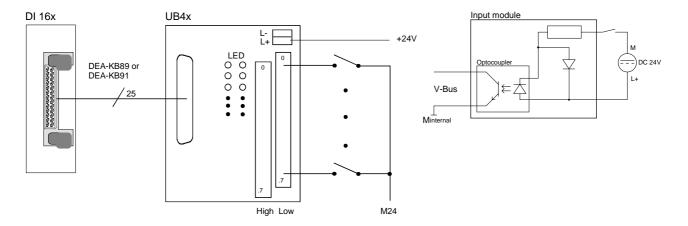
Order data	DI 16xDC 24V NPN	VIPA 221-1BH50
Description	and provides an electrically The input becomes active w This module requires an UI the respective status via	ccepts binary control signals from the process v isolated interface to the central bus system. hen it is connected to ground. 34x-converter. It has 16 channels that indicate LEDs on the UB4x. The module has to be module (DEA-UB4x) by means of a flattened
Properties	 16 inputs, isolated from the Active low input (signal le DC 24V nominal input vo 	vel "1" when input is at ground)

- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of a LED located on the conversion module UB4x

Construction

- [1] Label for module description
- [2] Clip
- [3] Recessed connector for the interface to a conversion module UB4x via the flattened round cable
- [4] Clip

Status indicator on UB4x LED Description


- 0....15 LEDs (yellow) I+0.0 to I+0.7 High I+0.0 to I+0.7 Low A "1" signal level is recognized as of app. 15V and the respective
- LED is turned on L+ L- LED (green) Supply voltage available

Pin assignment module

Connector	Pin	Assignment
26 25	2326	Supply voltage +DC 24V
	22	Input I+0.0
	15	Input I+0.7
	14	Input I+1.0
4 3 3	7	Input I+1.7
2	16	Supply voltage Ground

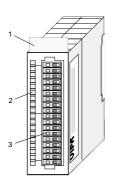
Interface to UB4x

Schematic diagram module

Electrical data	VIPA 221-1BH50
Number of inputs	16
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	15 28.8V
Signal voltage "1"	0 5V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption	40mA
via backplane bus	
Isolation	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the UB4x
Programming specifications	
Input data	2byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

221-1BH51 - DI 16xDC 24V NPN

Order data DI 16xDC 24V NPN


VIPA 221-1BH51

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. It has 16 channels that indicate the respective status by means of LEDs. The input becomes active when it is connected to ground.

Properties

- 16 inputs, isolated from the backplane bus
- Active low input (signal level "1" when input is at ground)
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

Construction

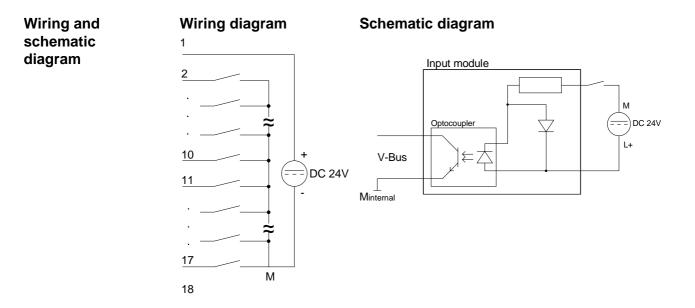
[1] Label for module description

Pin

- [2] LED status indicator
- [3] Edge connector

Status indicator connector assignment

LED Description


.07 LEDs (green)

I+0.0 to I+1.7 A "1" signal level is recognized as of app. ground and the respective LED is turned on

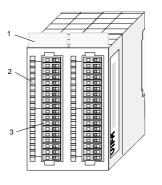
.1 3	
.2 .2 4	
.3 5	
.4 6	
.5 .7	
6 6 8	
.7 .7 9	
)
	I
.2 .2 12	2
.3 .3 13	3
.4 .4 14	1
.5 .5 .5	5
.6	5
	7
18	3
VIPA 221-1BH51 314	2

	Assignment
1	+DC 24V
2	Input I+0.0
3	Input I+0.1
9	Input I+0.7
10	Input I+1.0
17	Input I+1.7
18	Not connected

Assignment

Electrical data	VIPA 221-1BH51
Number of inputs	16
Nominal input voltage	DC 24V (20.4 28.8V)
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	20mA
Power dissipation	3W
Isolation tested with	DC 500V
Isolation	
 between channels and bus 	yes
- between channels	no
Length of cable	
- shielded	1000m
- unshielded	600m
Number simultaneously trigger able inputs	
- horizontal config. up to 60°C	16
- vertical config. up to 40°C	16
Status indicator	via LEDs located on the front
Data for selecting a sensor	
Input voltage	
- Rated value	DC 24V (20.4 28.8V)
- for signal "1"	0 5V ¹⁾
- for signal "0"	15 28.8V ¹⁾
Input current	
- for signal "1"	7mA
Input filter delay	3ms
Connection of two-wire Beros	possible
 permitted bias current 	1.5mA
Programming specifications	
Input data	2byte
Output data	-
Parameter data	-
Diagnostics data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	55g
Reference potential is ground of DC 24V.	· – –

221-2BL10 - DI 32xDC 24V


Order data	DI 32xDC 24V	VIPA 221-2BL10

Description The digital input module accepts binary control signals from the process and provides an electrically isolated interface to the central bus system It has 32 channels that indicate the respective status by means of LEDs.

Properties

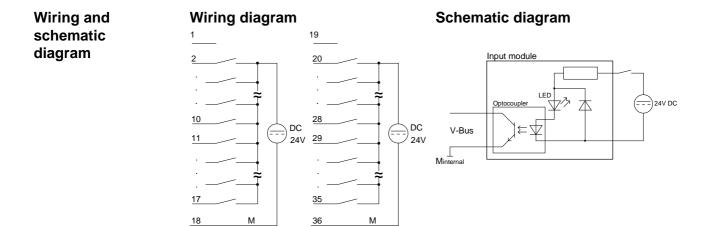
- 32 inputs, isolated from the backplane bus
- DC 24V nominal input voltage
- Suitable for standard switches and proximity switches
- Status indicator for each channel by means of an LED

Construction

[1] Label for module description

Pin

Assianment


- [2] LED status indicator
- [3] Edge connector

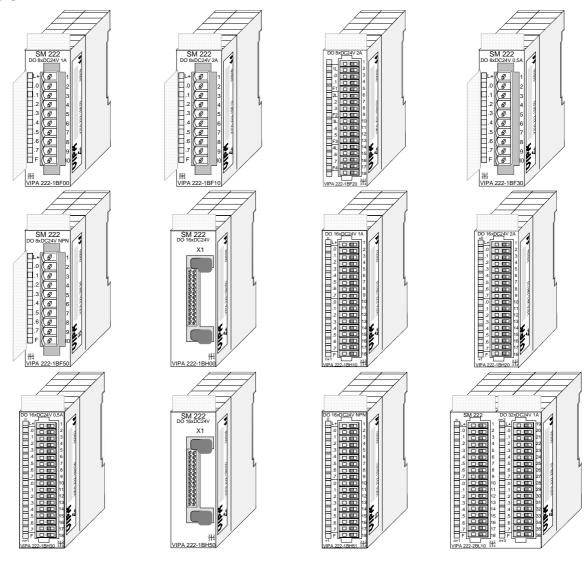
Status indicator pin assignment

LED Description

.07	LEDs (green)		n
	I+0.0 to I+3.7	_	-
	A "1" signal level is		
	recognized as of		
	app. 15V and the		-
	respective LED is		
	turned on		_
	-	-	-
			_
			=

					Assignment
		SM 221	DI 32xDC24V	1	Not connected
	->		.0	2 17	Input I+0.0I+1.7
S		.1 3	.1 21		
			.2 22	•	•
			.3 23	•	
			.4 .24	18	Ground
		.6 .8	.6 26	19	Not connected
		9	27		
			.0 28		
			1 29 30		
				20 35	Input I+2.0I+3.7
		4 14	.4 .32	36	Ground
		.5 15	.5 33	50	Ground
		.6 16	.6 34		
	⊢►	17	35		
			n+3 36		
		VIPA 221-2BL10 X 2 3 4	11+3		
		CHINELIZELLO ON			

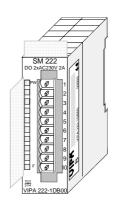
Electrical data	VIPA 221-2BL10
Number of inputs	32
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Power supply	DC 5V via backplane bus
Current consumption via backplane bus	40mA
Isolation	in 2 groups of 16 inputs each
	500Vrms (field voltage to the bus)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	4byte
Output data	-
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	50.8x76x88
Weight	50g


Chapter 4 Digital output modules

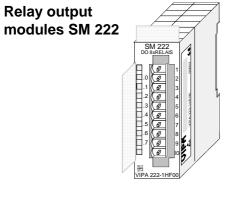
Overview This chapter contains a description of the construction and the operation of the VIPA digital output modules.

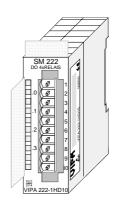
Contents Topic Page Digital output modules4-1 Chapter 4 222-1BF00 - DO 8xDC 24V 1A 4-4 222-1BF10 - DO 8xDC 24V 2A 4-6 222-1BF20 - DO 8xDC 24V 2A separated 4 á 2 4-8 222-1BH00 - DO 16xDC 24V 0.5A with UB4x 4-14 222-1BH20 - DO 16xDC 24V 2A 4-18 222-1DB00 - DO 2xAC 100...230V 2A 4-28 222-1HD20 - DO 4xRelay bistable 4-41 222-1FF00 - DO 8xSolid State COM 4-43

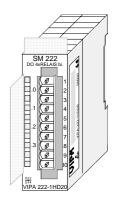
System overview


DC 24V output modules SM 222

Order data DC 24V output modules

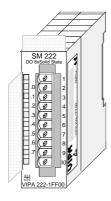

Туре	Order number	Page
DO 8xDC 24V 1A	VIPA 222-1BF00	4-4
DO 8xDC 24V 2A	VIPA 222-1BF10	4-6
DO 8xDC 24V 2A floating 4 á 2	VIPA 222-1BF20	4-8
DO 8xDC 24V 0.5A - ECO	VIPA 222-1BF30	4-10
DO 8xDC 24V NPN	VIPA 222-1BF50	4-12
DO 16xDC 24V 0.5A with UB4x	VIPA 222-1BH00	4-14
DO 16xDC 24V 1A	VIPA 222-1BH10	4-16
DO 16xDC 24V 2A	VIPA 222-1BH20	4-18
DO 16xDC 24V 0.5A - ECO	VIPA 222-1BH30	4-20
DO 16xDC 24V 0.5A NPN	VIPA 222-1BH50	4-22
DO 16xDC 24V 0.5A NPN	VIPA 222-1BH51	4-24
DO 32xDC 24V 1A	VIPA 222-2BL10	4-26

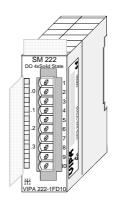

Dimmer output module SM 222



Order data	Туре	Order number	Page
Dimmer output	DO 2xAC 100230V, 2A	VIPA 222-1DB00	4-28
modulo			

Dimmer module





Order data relay output modules

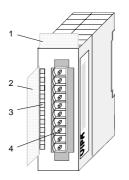
Туре	Order number	Page
DO 8xRelay COM	VIPA 222-1HF00	4-37
DO 4xRelay	VIPA 222-1HD10	4-39
DO 4xRelay bistable	VIPA 222-1HD20	4-41

Solid-state output modules SM 222

Order data	Туре	Order number	Page
solid-state output	DO 8xSolid State COM	VIPA 222-1FF00	4-43
modules	DO 4xSolid State	VIPA 222-1FD10	4-45

222-1BF00 - DO 8xDC 24V 1A

Order data DO 8xDC 24V 1A

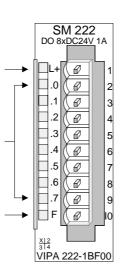

VIPA 222-1BF00

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires a supply of DC 24V via the front-facing connector. It provides 8 channels and the status of each channel is displayed by means of an LED.

• 8 outputs, isolated from the backplane bus

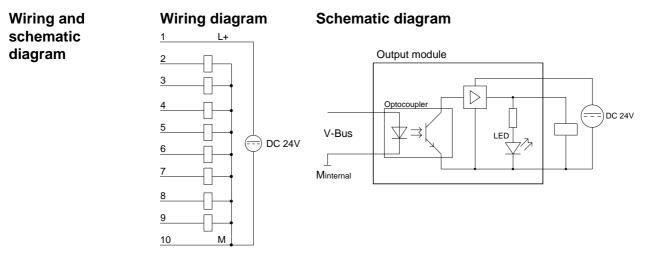
- DC 24V supply voltage
- 1A output current
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of an LED

Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

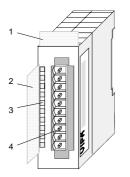

LED Description

- L+ LED (green) Supply voltage available
- .0.....7 LEDs (green) Q+0.0 to Q+0.7 when an output is active the respective LED is turned on
 - F LED (red) Overload, overheat or short circuit error

Pin Assignment

- 1 DC 24V supply voltage
- 2 Output Q+0.0
- 3 Output Q+0.1
- 4 Output Q+0.2
- 5 Output Q+0.3
- 6 Output Q+0.4
- 7 Output Q+0.5
- 8 Output Q+0.6
- 9 Output Q+0.7
- 10 Supply ground

Electrical data	VIPA 222-1BF00
Number of outputs	8
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	70mA
Output current per channel	1A protected against sustained short circuits
Total current	8A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	1byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

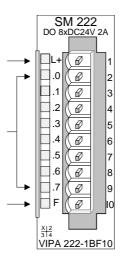

222-1BF10 - DO 8xDC 24V 2A

Order data DO 8xDC 24V 2A

VIPA 222-1BF10

- **Description** The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires a DC 24V supply via the connector located on the front. It provides 8 channels and the status of each channel is displayed by means of an LED. The maximum load current per output is 2A.
- Properties 8 outputs, isolated from the backplane bus
 - DC 24V supply voltage
 - Output current 2A
 - Suitable for magnetic valves and DC contactors
 - LEDs for supply voltage and error message
 - Active channel indication by means of an LED

Construction

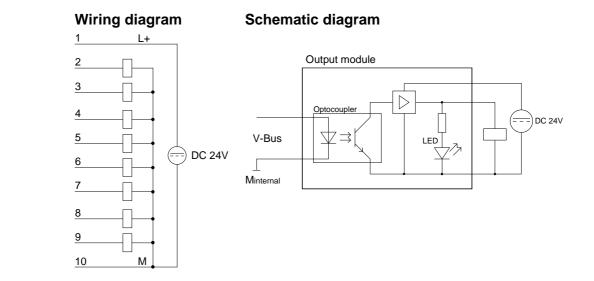


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description

- L+ LED (green) Supply voltage available
- .0.....7 LEDs (green) Q+0.0 to Q+0.7 when an output becomes active the respective LED is turned on
 - F LED (red) Overload, overheat, short circuit error


Pin Assignment

- 1 DC 24V supply voltage
- 2 Output Q+0.0
- 3 Output Q+0.1
- 4 Output Q+0.2
- 5 Output Q+0.3
- 6 Output Q+0.4
- 7 Output Q+0.5
- 8 Output Q+0.6
- 9 Output Q+0.7
- 10 Supply ground

Wiring and

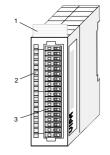
schematic

diagram

Electrical data	VIPA 222-1BF10
Number of outputs	8
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	70mA
Output current per channel	2A protected against sustained short circuits
Total current	10A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	1byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

222-1BF20 - DO 8xDC 24V 2A separated 4 á 2

Order data DO 8xDC 24V 2A

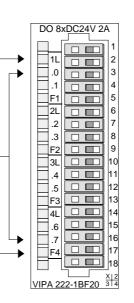

VIPA 222-1BF20

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires a DC 24V supply via the connector located on the front. It provides 8 channels and the status of each channel is displayed by means of an LED. The maximum load current per output is 2A.

Properties • 8 outputs, isolated from the backplane bus

- Potential separation in 4 groups á 2 outputs
- DC 24V supply voltage
- Output current 2A
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of an LED

Construction



- [1] Label for module description
- [2] LED status indicator
- [3] Edge connector

Status indicator pin assignment

LED Description

- 1L...4L LED (green) Supply voltage available LEDs (green)
- .0....7 Q+0.0 to Q+0.7 (green) when an output becomes active the respective LED is turned on
- F1...F4 LED (red) Overload, overheat, short circuit error

Pin Assignment

not used

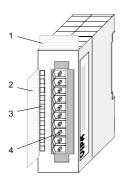
1

- 2 Supply voltage 1L+
- 3 Output Q+0.0
- 4 Output Q+0.1
- 5 Ground 1M
- 6 Supply voltage 2L+
- 7 Output Q+0.2
- 8 Output Q+0.3
- 9 Ground 2M
- 14 Supply voltage 4L+
- 15 Output Q+0.6
- 16 Output Q+0.7
- 17 Ground 4M
- 18 not used

Wiring and schematic	Wiring diagram Schematic	gram Schematic diagram			
diagram	2 L+ 3 DC 24V 5 M				
	$\begin{array}{c} 6 \\ \hline \\ 7 \\ \hline \\ 9 \\ \hline \\ 9 \\ \hline \\ 9 \\ \hline \\ 10 \\ \hline \\ 10 \\ \hline \\ 11 \\ \hline \\ 12 \\ \hline \\ 13 \\ \hline \\ 14 \\ \hline 14 \\ 14 \\$				
	15 16 17 18 18				
Technical data	Electrical data	VIPA 222-1BF20			
	Number of outputs	8			
	Nominal load voltage	DC 24V (20.4 28.8V)			
	No-load current consumption at L+ (all A.x=off)	10mA			
	Current consumption via backplane bus	70mA			
	Output current per channel	2A protected against sustained short circuits			
	Voltage supply	DC 5V via backplane bus DC 24V (20.4 28.8V)			
	Isolation	500Vrms (field voltage to the bus)			
	Switch rate				
	- for resistive load	max. 1kHz			
	- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz			
	- for lamp load	max. 10Hz			
	Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)			
	Status indicator	via LEDs located on the front			
	Programming specifications				
	Input data	-			
	Output data	1byte			
	Parameter data	-			
	Diagnostic data	-			
	Dimensions and weight				
	Dimensions (WxHxD) in mm	25.4x76x88			
	Weight	50g			

222-1BF30 - DO 8xDC 24V 0.5A - ECO

Order data DO 8xDC 24V 0.5A

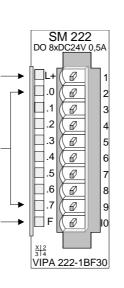

VIPA 222-1BF30

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires a supply of DC 24V via the front-facing connector. It provides 8 channels and the status of each channel is displayed by means of an LED.

Properties

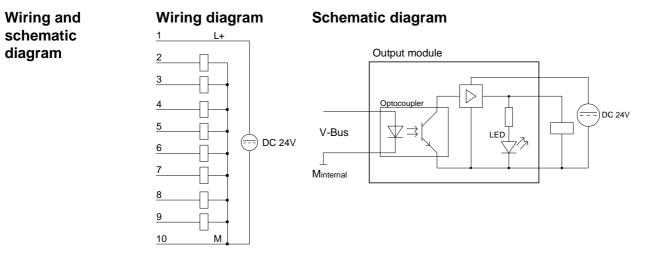
- 8 outputs, isolated from the backplane bus
 - DC 24V supply voltage
 - 0.5A output current
 - Suitable for magnetic valves and DC contactors
 - LEDs for supply voltage and error message
 - Active channel indication by means of an LED

Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment


LED Description

- L+ LED (green) Supply voltage available
- .0.....7 LEDs (green) Q+0.0 to Q+0.7 when an output is active the respective LED is turned on
 - F LED (red) Overload, overheat or short circuit error

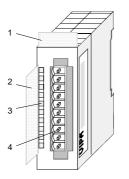
Pin Assignment

- 1 DC 24V supply voltage
- 2 Output Q+0.0
- 3 Output Q+0.1
- 4 Output Q+0.2
- 5 Output Q+0.3
- 6 Output Q+0.4
- 7 Output Q+0.5
- 8 Output Q+0.6
- 9 Output Q+0.7
- 10 Supply ground

Electrical data	VIPA 222-1BF30
Number of outputs	8
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	70mA
Output current per channel	0.5A protected against sustained short circuits
Total current	4A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	1byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

222-1BF50 - DO 8xDC 24V 0.5A NPN

Order data DO 8xDC 24V 0.5A NPN


Description The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via Misfit outputs. It provides 8 channels that operate as Low-Side switches and that are interconnected via the load voltage. Low-Side switches are suitable for the control of grounds. When a short circuit occurs between the switched line and ground the result is that the load is activated until the short circuit has been removed. Short circuits do not place an additional load on the supply voltage.

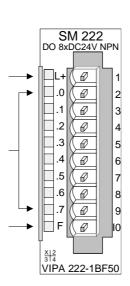
Due to the system an overload at a channel can lead to the fact that the other channels are switched off. The LEDs however are further on, since they indicate the specified condition of the channels.

Properties

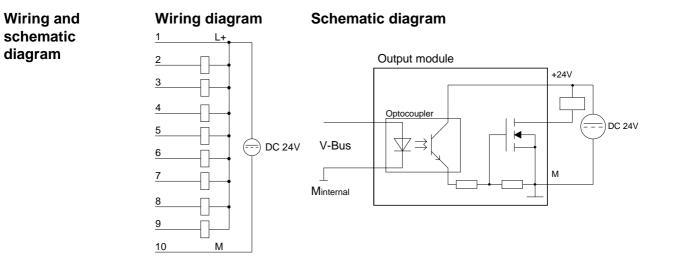
- 8 Low-Side outputs
- Output current per channel 0.5A
- Suitable for small motors, lamps, magnetic valves and contactors

Construction

[1] Label for module description


VIPA 222-1BF50

- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


Status indicator pin assignment

LED Description

- L+ LED (green) Supply voltage available
- .07 LEDs (green) Q+0.0 to Q+0.7 when an output is active the respective LED is turned on
 - F LED (red) Overload, overheat or short circuit error

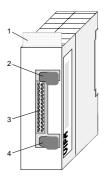
- 1 DC 24V supply voltage
- 2 Output Q+0.0
- 3 Output Q+0.1
- 4 Output Q+0.2
- 5 Output Q+0.3
- 6 Output Q+0.4
- 7 Output Q+0.5
- 8 Output Q+0.6
- 9 Output Q+0.7
- 10 Supply ground

hnica	l data
	hnica

Electrical data	VIPA 222-1BF50
Number of outputs	8 via Low-Side
Nominal load voltage	DC 24V (20.4 28.8V)
Current consumption L+ without load	15mA (every A.x=off)
max. output current per channel	0.5A
Total current of outputs	4A
Power supply	DC 5V via backplane bus
Current consumption via bus	50mA
Power dissipation	1.5W
Isolation tested with	DC 500V
Isolation	
 between channels and bus 	yes
- between channels	no
Short circuit protection of output	yes (1.7A threshold)
Length of cable (unshielded)	600m
Switch rate	
 for resistive load 	1kHz
- for inductive load	0.5Hz (IEC947-5-1, DC13)
- for lamp load	10Hz
Status indicator	via LEDs located on the front
Data for selecting an actor	
Output current signal "1"	
- maximum current	125mV
- minimum current	0V
Output current signal "1"	0.5A (rated value)
Output current signal "0"	100µA (leakage current)
Output delay resistive load	
- from "0" to "1"	10µs
- from "1" to "0"	55µs
Programming specifications	
Input data	-
Output data	1byte
Parameter data	-
Diagnostics data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	55g

222-1BH00 - DO 16xDC 24V 0.5A with UB4x

Order data DO 16xDC 24V 0.5A


VIPA 222-1BH00

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires 24V via the connector on the front. It has 16 channels and the status of each channel is displayed by means of an LED. This module requires a converter (DEA-UB4x). The module must be connected to the converter module by means of a flattened round cable (DEA-KB91C).

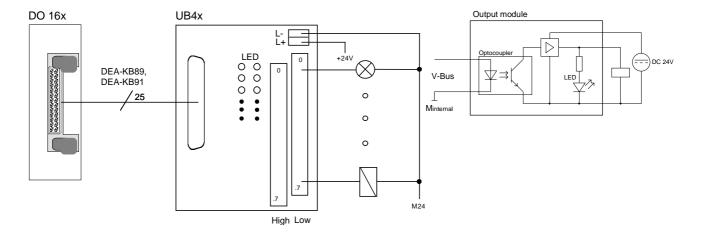
Properties

- 16 outputs, isolated from the backplane bus
- DC 24V supply voltage
- Output current 0.5A
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of a LED located on converter module UB4x

Construction

- [1] Label for module description
- [2] Clip
- [3] Recessed connector for the interface to a conversion module UB4x via the flattened round cable
- [4] Clip

Status indicator on UB4x LED Description


- 0....15 LEDs (yellow) Q+0.0 to Q+0.7 High Q+1.0 to Q+1.7 Low when an output is active the respective LED is turned on
- L+ L- LED (green) Supply voltage available

Pin assignment module

Connector	Pin	Assignment
26 9 9 25 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		Assignment DC 24V supply voltage Output Q+0.0
2	, 16	Supply ground

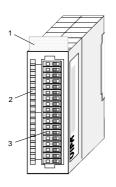
Interfacing of UB4x

Schematic diagram

Electrical data	VIPA 222-1BH00
Number of outputs	16
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	120mA
Output current per channel	0.5A protected against sustained short circuits
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the UB4x
Programming specifications	
Input data	-
Output data	2byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

222-1BH10 - DO 16xDC 24V 1A

Order data DO 16xDC 24V 1A


VIPA 222-1BH10

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires 24V via the connector on the front. It has 16 channels and the status of each channel is displayed by means of an LED.

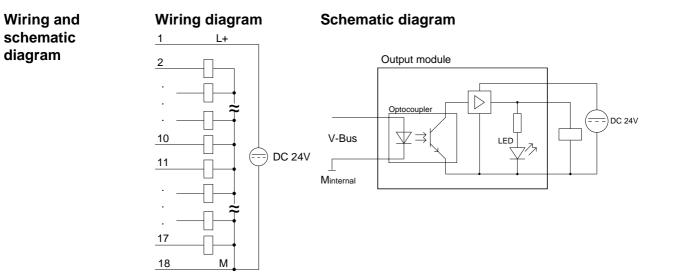
Properties

- 16 outputs, isolated from the backplane bus
- DC 24V supply voltage
- 1A output current rating
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of an LED

Construction

- [1] Label for module description
- [2] LED status indicator
- [3] Edge connector

Status indicator pin assignment


LED	Description		Pin	Assignment
L+	LED (green)	DO 16xDC24V 1A	1	DC 24V supply voltage
	Supply voltage available		2	Output Q+0.0
.07	LEDs (green)		3	Output Q+0.1
	Q+0.0 to Q+1.7			
	when an output is active		•	
	the respective LED is turned on		9	Output Q+0.7
F	LED (red)		10	Output Q+1.0
	Overload, overheat or	.2		
	short circuit error		·	
			16	Output Q+1.6

VIPA 222-1BH10

Output Q+1.7

Supply ground

17 18

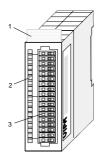
Electrical data	VIPA 222-1BH10
Number of outputs	16
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	120mA
Output current per channel	1A protected against sustained short circuits
Total current	10A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	2byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

222-1BH20 - DO 16xDC 24V 2A

Order data

VIPA 222-1BH20

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires 24V via the connector on the front. It has 16 channels and the status of each channel is displayed by means of an LED.

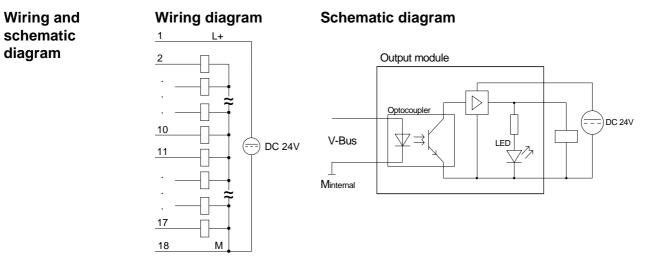

Properties

- 16 outputs, isolated from the backplane bus
- DC 24V supply voltage

DO 16xDC 24V 2A

- 2A output current rating
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of an LED

Construction


- [1] Label for module description
- [2] LED status indicator
- [3] Edge connector

VIPA 222-1BH20

Status indicator pin assignment

LED	Description		
			DO 16xDC24V 2A
L+	LED (green)		
	Supply voltage available		
.07	LEDs (green)		.2 . 4
	Q+0.0 to Q+1.7		
	when an output is active		.6
	the respective LED is	_	
	turned on		
F	LED (red)		
-	Overload, overheat or		
	short circuit error		.5 15
		1	.6

Pin	Assignment
1	DC 24V supply voltage
2	Output Q+0.0
•	
•	
•	
9	Output Q+0.7
10	Output Q+1.0
17	Output Q+1.7
18	Supply ground

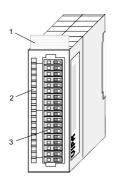
r

Electrical data	VIPA 222-1BH20
Number of outputs	16
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	120mA
Output current per channel	2A protected against sustained short circuits
max. total current	10A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	2byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

222-1BH30 - DO 16xDC 24V 0.5A - ECO

Order data DO 16xDC 24V 0.5A

VIPA 222-1BH30

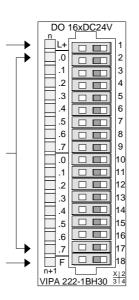

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires 24V via the connector on the front. It has 16 channels and the status of each channel is displayed by means of an LED.

Properties

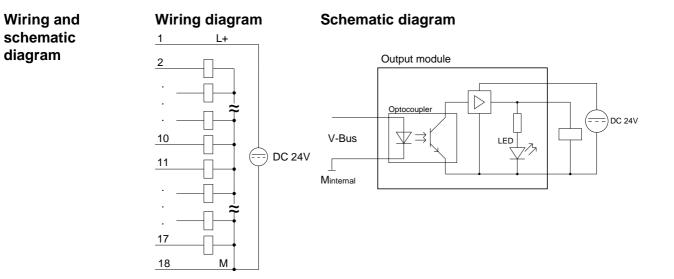
• 16 outputs, isolated from the backplane bus

- DC 24V supply voltage
- 0.5A output current rating
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of an LED

Construction



- [1] Label for module description
- [2] LED status indicator
- [3] Edge connector


Status indicator pin assignment

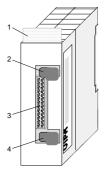
LED Description

- L+ LED (green) Supply voltage available
- .07 LEDs (green) Q+0.0 to Q+1.7 when an output is active the respective LED is turned on
 - F LED (red) Overload, overheat or short circuit error

Pin	Assignment
1	DC 24V supply voltage
2	Output Q+0.0
•	
9	Output Q+0.7
10	Output Q+1.0
•	
·	
17	Output Q+1.7
18	Supply ground

Electrical data	VIPA 222-1BH30
Number of outputs	16
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Current consumption via backplane bus	120mA
Output current per channel	0.5A protected against sustained short circuits
Total current	8A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	2byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

222-1BH50 - DO 16xDC 24V 0.5A NPN

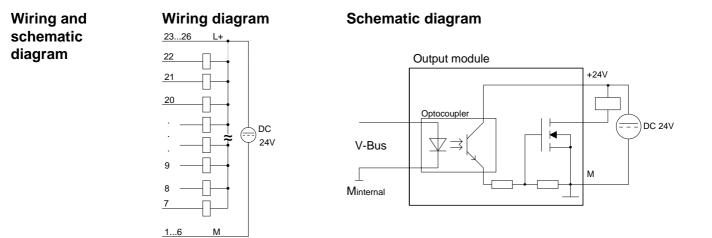

- Order data DO 16xDC 24V 0.5A NPN
- **Description** The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via Misfit outputs. It provides 16 channels that operate as Low-Side switches and that are interconnected via the load voltage. Low-Side switches are suitable for the control of grounds. When a short circuit occurs between the switched line and ground the result is that the load is activated until the short circuit has been removed. Short circuits do not place an additional load on the supply voltage.

Due to the system an overload at a channel can lead to the fact that the other channels are switched off. The LEDs however are further on, since they indicate the specified condition of the channels.

Properties

- 16 Low-Side outputs
- Output current per channel 0.5A
- Suitable for small motors, lamps, magnetic valves and contactors

Construction



[1] Label for module description

VIPA 222-1BH50

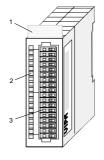
- [2] Clip
- [3] Recessed connector for the interface to a output connection
- [4] Clip

Pin assignment	Connector	Pin	Assignment
		2326 22 21	DC 24V supply voltage Output Q+0.0 Output Q+0.1 Output Q+1.6 Output Q+1.7 Supply ground

Attention!

This module is not deployable with UB4x from VIPA without technical intervention. For deploying the module with a converter module from VIPA, please call the VIPA Hotline.

Electrical data	VIPA 222-1BH50
Number of outputs	16 via Low-Side
Nominal load voltage	DC 24V (20.4 28.8V)
max. output current per channel	0.5A
Current consumption via backplane bus	120mA
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	500Vrms (field voltage to the bus)
Switching rate	20kHz max.
Status indicator	-
Programming specifications	
Input data	-
Output data	2byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	80g

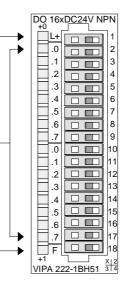

222-1BH51 - DO 16xDC 24V 0.5A NPN

- Order data DO 16xDC 24V 0.5A NPN
- **Description** The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via Mosfet outputs. It provides 16 channels that operate as Low-Side switches and that are interconnected via the load voltage. Low-Side switches are suitable for the control of grounds. When a short circuit occurs between the switched line and ground the result is that the load is activated until the short circuit has been removed. Short circuits do not place an additional load on the supply voltage.

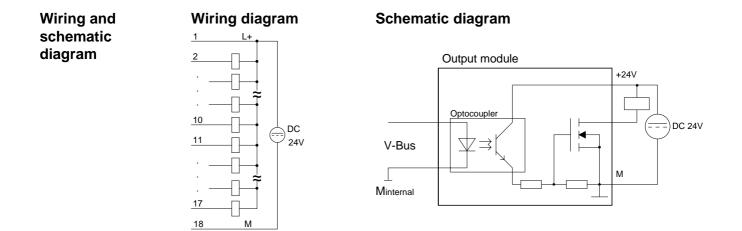
Properties

- 16 Low-Side outputs
- Output current per channel 0.5A
- Suitable for small motors, lamps, magnetic valves and contactors

Construction	
--------------	--


[1] Label for module description

VIPA 222-1BH51


- [2] LED status indicator
- [3] Edge connector

Status indicator pin assignment

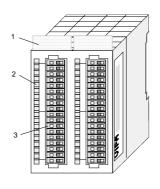
- LED Description
- L+ LED (green) Supply voltage available
- .07 LEDs (green) Q+0.0 to Q+1.7 when an output is active the respective LED is turned on E LED (red)
 - LED (red)
 Overload, overheat or short circuit error

Pin	Assignment
1 2	DC 24V supply voltage Output Q+0.0
9	Output Q+0.7
10	Output Q+1.0
17 18	Output Q+1.7 Supply ground

Electrical data	VIPA 222-1BH51
Number of outputs	16 via Low-Side
Nominal load voltage	DC 24V (20.4 28.8V)
Current consumption L+ without load	25mA (every A.x=off)
max. output current per channel	0.5A
Total current of outputs	8A
Power supply	DC 5V via backplane bus
Current consumption via bus	90mA
Power dissipation	2.5W
Isolation tested with	DC 500V
Isolation	
- between channels and bus	yes
- between channels	no
Short circuit protection of output	yes (1.7A threshold)
Length of cable (unshielded)	600m
Switch rate	
- for resistive load	1kHz
- for inductive load	0.5Hz (IEC947-5-1, DC13)
- for lamp load	10Hz
Status indicator	via LEDs located on the front
Data for selecting an actor	
Output current signal "1"	
- maximum current	125mV
- minimum current	0V
Output current signal "1"	0.5A (rated value)
Output current signal "0"	100µA (leakage current)
Output delay resistive load	
- from "0" to "1"	10µs
- from "1" to "0"	55µs
Programming specifications	
Input data	-
Output data	2byte
Parameter data	-
Diagnostics data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	55g

222-2BL10 - DO 32xDC 24V 1A

Order data DO 32xDC 24V 1A

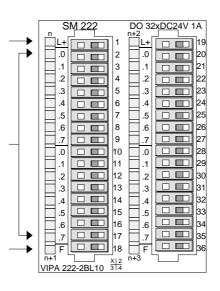

VIPA 222-2BL10

Description The digital output module accepts binary control signals from the central bus system and transfers them to the process level via outputs. The module requires 24V via the connector on the front. It provides 32 channels and the status of each channel is displayed by means of LEDs.

Properties

- 32 outputs, isolated from the backplane bus
- DC 24V supply voltage
- Output current per channel 1A
- Suitable for magnetic valves and DC contactors
- LEDs for supply voltage and error message
- Active channel indication by means of an LED

Construction

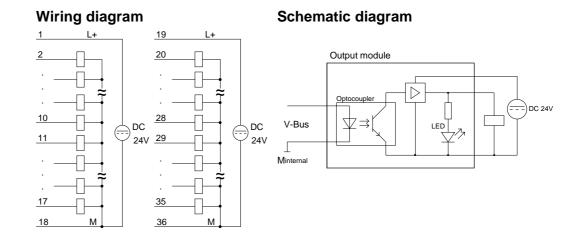


- [1] Label for module description
- [2] LED status indicator
- [3] Edge connector

Status indicator pin assignment

LED Description

- L+ LED (green) Supply voltage available
- .07 LEDs (green) Q+0.1 to Q+1.7 when an output is active the respective LED is turned on
 - F LED (red) Overload, overheat or short circuit error


Pin Assignment

- 1 DC 24V supply voltage
- 2 Output Q+0.0
- 3 Output Q +0.1
-
- 17 Output Q +1.7
- 18 supply ground
- 19 DC 24V supply voltage
- 20 Output Q +2.0
-
- 34 Output Q +3.6
- 35 Output Q +3.7
- 36 supply ground

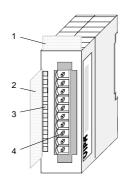
Wiring and

schematic

diagram

	VIPA 222-2BL10
Number of outputs	32 (at groups to 16)
Nominal load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	15mA
Current consumption via backplane bus	180mA
max. output current per channel	1A protected against sustained short circuits
max. contact load	10A
Voltage supply	DC 5V via backplane bus
	DC 24V (20.4 28.8V)
Isolation	per group
	500Vrms (field voltage to the bus)
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	4byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	50.8x76x88
Weight	50g

222-1DB00 - DO 2xAC 100...230V 2A


Order data DO 2xAC 100...230V 2A VIPA 222-1DB00

DescriptionThe digital output module controls the power drain of the outputs by using
the settings of the user program. The module provides 2 individual trigger
able channels and requires an AC 100...230V supply via the connector
located on the front. The maximum load current per output is 2A.
The module has a configurable software dimmer function to avoid a step
change of the load current. The software dimmer function transforms a
step change of the load current into a slow dim up or down of the load.

Properties

- Software dimmer for resistive, inductive or capacitive load
- · 2 outputs, isolated from the backplane bus
- Output current 2A
- Automatic load detection
- Voltage AC 100 ... 230V
- Frequency range 47 ... 63Hz
- LEDs for supply voltage and error message

Construction



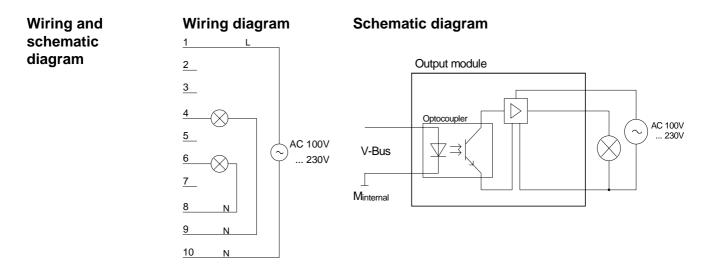
- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description

- PW LED (green) Module is power supplied by back plane bus
- F LED (red) Overload, overheat, missing power supply or parameterization error

Pin Assignment


1

6

9

10

- AC 100...230V load voltage (L)
- 2 AC 100...230V load voltage (L)
- 3 not connected
- 4 Output Q+0.0 channel 0
- 5 not connected
 - Output Q+2.0 channel 1
- 7 not connected
- 8 AC 100...230V neutral conductor (N)
 - AC 100...230V neutral conductor (N)
 - AC 100...230V neutral conductor (N)

Safety precautions

Danger!

- The module is not certified for applications in explosive environments (EX-zone)!
- You have to disconnect the module from the main power source before commencing installation or maintenance work, i.e. before you start to work the main supply line must be disconnected (disconnect plugs, on permanent installations the respective fuse has to be turned off)!
- Only properly qualified electrical staff is allowed to install, connect and/or modify electrical equipment!
- To provide a sufficient level of ventilation and cooling to the power supply components whilst maintaining the compact construction it was not possible to protect the unit from incorrect handling and a proper level of fire protection. For this reason the required level of fire protection must be provided by the environment where the power supply is installed (e.g. installation in a switchboard that satisfies the fire protection rules and regulations)!
- Please adhere to the national rules and regulations of the location and/or country where the units are installed (installation, safety precautions, EMC ...).

Automatic load	For each channel the module has an automatic load detection. On each
detection	channel you may connect either an inductive or a capacitive load.

Attention!

Mixing respectively switching over inductive and capacitive loads at one channel is not allowed. Resistive loads may always be merged.

Data output area The module uses 2bytes per channel of the data output area. During run time a value 0...100 may be preset. This is corresponding to dim value 0% (switched off) ... 100% (max. load).

A channel is deactivated with values > 100%.

Data output area:

Byte	Bit 7 Bit 0
0, 1	0 100: Software dimmer in % for output channel 0
2, 3	0 100: Software dimmer in % for output channel 1

Parameter data 15byte are available for the configuration data.

Parameter area:

Byte	Bit 7 Bit 0	Default
0	Diagnostic alarm byte:	00h
	Bit 0: 0: Overcurrent recognition channel 0 off	
	1: Overcurrent recognition channel 0 on	
	Bit 1: 0: Overcurrent recognition channel 1 off	
	1: Overcurrent recognition channel 1 on	
	Bit 3 2: reserved	
	Bit 4: 0: Overheat recognition off	
	1: Overheat recognition on	
	Bit 5: reserved	
	Bit 6: 0: Diagnostic interrupt disabled	
	1: Diagnostic interrupt enabled	
	Bit 7: reserved	
1	reserved	00h
2	Software coefficient channel 0	09h
	1 255: Software coefficient	
3	Software coefficient channel 1	09h
	1 255: Software coefficient	
4	Preheat time channel 0	09h
	0 255: Periods of the load voltage	
5	Preheat time channel 1	09h
	0 255: Periods of the load voltage	
6	Bit 0: Behavior at CPU STOP channel 0	00h
	0: Switch substitute value	
	1: Keep last value	
	Bit 1: Behavior at CPU STOP channel 1	
	0: Switch substitute value	
	1: Keep last value	
	Bit 7 2: reserved	
7, 8	Substitute value channel 0	00h
9, 10	Substitute value channel 1	00h
11, 12	Preheat value channel 0 (0 100%)	00h
13, 14	Preheat value channel 1 (0 100%)	00h

- Diagnostic interrupt A diagnostic is an error message to the CPU. If diagnostic interrupt is enabled by parameterization, the following events may release a diagnostic interrupt:
 - Overcurrent recognition channel 0
 - Overcurrent recognition channel 1
 - Overheat recognition for both channels
 - Missing or failure of load voltage

The error events *overcurrent* and *overheat* recognition may be activated respectively deactivated by the parameterization.

With a diagnostic 10bytes are transferred to the CPU.

Within the CPU you may react to the diagnostic by an appropriate program. Details may be found at "Diagnostic data".

Software coefficient For each channel the module has a configurable software dimmer function to avoid a step change of the load current. The software dimmer function transforms a step change of the load current into a slow dim up or down of the load.

By means of the *software coefficient* you may determine a constant rate of change for the dimming operation.

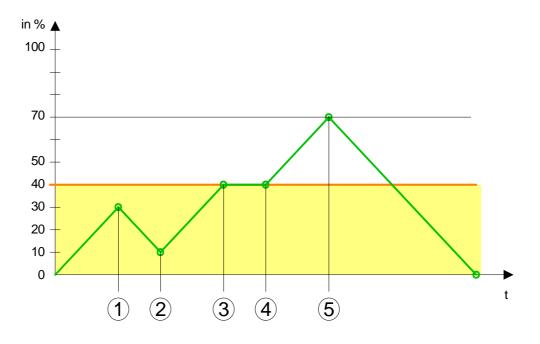
The software coefficient results from the desired time for dimming from 0% to 100% and the period duration of the load voltage. It is valid:

$$n = \frac{time}{2 \cdot P}$$

with n =Software coefficient (1...255)

time = desired time for 0%...100% in s (max. 10s)

P = Period duration of the load voltage in s at f = 47...63Hz


A higher *software coefficient* results in a slower slew rate of the dimmer function.

Behavior at CPUFor each channel the behavior of the module at a CPU STOP may be
configured here. You may either keep the last value or switch a substitute
value. This may be defined at *substitute value*.

Preheat time Preheat value For each channel the module has a configurable preheat function to avoid overcurrent errors by fast dimming of a cold filament. For configuration there are the parameters *preheat time* and *preheat value*. With the preheat time the duration of preheating may be preset. With the preheat value a threshold in % may be preset starting from the preheat function is active.

The following figure shows the usage of the preheat function at an example.

The preheat value is e.g. 40%. Values below this threshold are output without preheating. Here it is dimmed to maximally 70%.

- (1) Dim up to 30% (no preheating below the threshold)
- (2) Dim down to 10%
- (3) Dim up to 70%, at 40% constant during the preheat time
- (4) At preheat time it is dimmed up to the preset 70%.
- (5) It is directly dimmed down to 0%.

Diagnostic data The diagnostic data have a size of 10bytes and are stored in the record sets 0 and 1 of the system data area.

As soon as you activated the alarm release in byte 0 of the parameter area, in case of an error *record set 0* is transferred to the superordinated system. *Record set 0* has a fixed content and a length of 4byte. The contents of *record set 0* may be monitored in plain text via the diagnosis window of the CPU.

For extended diagnostic purposes during runtime, you may evaluate the *record set 1* with a size of 10bytes via the SFCs 51 and 59.

EvaluateAt a diagnostic task the CPU interrupts the user application and branchesdiagnosisinto OB 82. With according programming, you may request in this OB with
the SFCs 51 and 59 detailed diagnostic information and react on it.After execution of the OB 82, the processing of the user application is
continued. The diagnostic data remains consistent until leaving the OB 82.

Record set 0 Byte 0 to 3:

Record set 0 (Byte 0 to 3):

Byte	Bit 7 Bit 0	Default
0	Bit 0: Error in module	00h
	Bit 1: reserved	
	Bit 2: External error	
	Bit 3: Channel error	
	Bit 4: reserved	
	Bit 5: Error load voltage (L)	
	Bit 6: reserved	
	Bit 7: Wrong parameter in module	
1	Bit 3 0: Module class	1Fh
	1111 Digital module	
	Bit 4: Channel information present	
	Bit 7 5: reserved	
2	not used	00h
3	Bit 7 0: reserved	00h

 Record set 1
 Byte 0 to 9:

 Record set 1 contains the 4byte of record set 0 and 6byte module specific diagnostic data.

The diagnostic bytes have the following assignment:

Record set 1 (Byte 0 to 9):

Byte	Bit 7 Bit 0	Default
03	Content of record set 0 (see page above)	-
4	Bit 6 0: Channel type	72h
	72h: Digital output	
	Bit 7: reserved	
5	Bit 7 0: Number of diagnostic output bits per channel	08h
6	Bit 7 0: Number of similar channels of a module	02h
7	Bit 0: Channel 0: Channel error	00h
	Bit 1: Channel 1: Channel error	
	Bit 7 2: reserved	
8	Bit 0: Channel 0: Parameterization error recognized	00h
	Bit 2, 1: reserved	
	Bit 3: Channel 0: Overload recognized	
	Bit 5, 4: reserved	
	Bit 6: Channel 0: Missing load voltage or is failed	
	Bit 7: Channel 0: Overheat recognized	
9	Bit 0: Channel 1: Parameterization error recognized	00h
	Bit 2, 1: reserved	
	Bit 3: Channel 1: Overload recognized	
	Bit 5, 4: reserved	
	Bit 6: Channel 1: Missing load voltage or is failed	
	Bit 7: Channel 1: Overheat recognized	

Dimensions and weight25.4x76x88Dimensions WxHxD25.4x76x88Weight65gData for specific moduleNumber of outputs2Length of cable600m• unshielded600mProgramming specificationsInput data-Output data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, PotentialsRated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs horizontal configurationmax. 4Aup to 40°Cmax. 4AIsolation between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the backplane bus190mA- from the backplane bus190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, DiagnosticsparameterizableDiagnosis functionsred F-LED- Diagnosis functionsred F-LED- Sum error displayred F-LED- Diagnostic information readablepossible	Module name	VIPA 222-1DB00
Weight65gData for specific moduleNumber of outputs2Length of cable600m- unshielded600mProgramming specificationsInput data-Output data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, PotentialsRated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs- horizontal configurationmax. 4Aup to 40°Cmax. 4AIsolationyes- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, InterruptsparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Dimensions and weight	
Data for specific module2Number of outputs2Length of cable - unshielded600mProgramming specifications600mInput data-Output data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, Potentials7Rated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs - horizontal configuration up to 40°Cmax. 4Aup to 60°Cmax. 3A- vertical configuration up to 40°Cyes- between channels and backplane bus - between the channelyes- between the channelnoInsulation tested withAC4000VCurrent consumption - from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts - Diagnosis errorparameterizableDiagnosis functions - Sum error display - Error power supplyred F-LED green LED	Dimensions WxHxD	25.4x76x88
Number of outputs2Length of cable - unshielded600mProgramming specifications-Input data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, Potentials-Rated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs - horizontal configuration up to 40°C-wp to 60°Cmax. 4Aup to 60°Cmax. 4AIsolation between channels and backplane bus - between the channelyes- between the channelnoInsulation tested withAC4000VCurrent consumption - from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics-Interrupts - Diagnosis errorparameterizableDiagnosis functions - Sum error display - Error power supplyred F-LED green LED	Weight	65g
Length of cable600m• unshielded600mProgramming specifications	Data for specific module	
- unshielded600mProgramming specifications	Number of outputs	2
Programming specifications-Input data-Output data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, Potentials-Rated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs horizontal configuration-up to 40°Cmax. 4Aup to 60°Cmax. 3A- vertical configuration-up to 40°Cmax. 4AIsolation between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics-Interrupts Diagnosis functions Sum error displayred F-LED- Error power supplygreen LED	Length of cable	
Input data-Output data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, PotentialsRated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs- horizontal configurationmax. 4Aup to 40°Cmax. 3A- vertical configurationyes- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the backplane bus6WStatus, Interrupts, DiagnosticsInterrupts- Diagnosis errorDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	- unshielded	600m
Output data4byteParameter data15byteDiagnostic data10byteVoltages, Currents, PotentialsRated load voltage (L)Rated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs horizontal configurationmax. 4Aup to 40°Cmax. 3A- vertical configurationmax. 4Aup to 40°Cmax. 4AIsolationyes- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics10Diagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Programming specifications	
Parameter data15byteDiagnostic data10byteVoltages, Currents, PotentialsRated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs- horizontal configurationmax. 4Aup to 40°Cmax. 3A- vertical configurationmax. 4Aup to 40°Cmax. 4Alsolationmax. 4Asolationyes- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics10InterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Input data	-
Diagnostic data10byteVoltages, Currents, Potentials10byteRated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs47 63Hz- horizontal configurationmax. 4Aup to 40°Cmax. 3A- vertical configurationmax. 3A- vertical configurationyes- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics190mAInterruptsparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Output data	4byte
Voltages, Currents, PotentialsAC 100/230VRated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs47 63Hz- horizontal configuration up to 40°Cmax. 4Aup to 60°Cmax. 3A- vertical configuration up to 40°Cmax. 4AIsolationyes- between channels and backplane bus - between the channelyes- between the channelnoInsulation tested withAC4000VCurrent consumption - from the backplane bus - from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, DiagnosticsInterrupts - Diagnosis errorparameterizableDiagnosis functions - Sum error display - Error power supplyred F-LED green LED	Parameter data	15byte
Rated load voltage (L)AC 100/230VFrequency range47 63HzTotal current of the outputs horizontal configurationmax. 4Aup to 40°Cmax. 3A- vertical configurationmax. 4Aup to 60°Cmax. 3A- vertical configurationmax. 4Alsolationmax. 4A- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, DiagnosticsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Diagnostic data	10byte
Frequency range47 63HzTotal current of the outputs - horizontal configuration up to 40°Cmax. 4Aup to 60°Cmax. 3A- vertical configuration up to 40°Cmax. 4AIsolationmax. 4AIsolationyes- between channels and backplane bus - between the channelyes- between the channelnoInsulation tested withAC4000VCurrent consumption - from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics190mAInterrupts - Diagnosis functions - Sum error display - Error power supplyred F-LED green LED	Voltages, Currents, Potentials	
Total current of the outputsmax. total- horizontal configurationmax. 4Aup to 40°Cmax. 3A- vertical configurationmax. 4Aup to 40°Cmax. 4AIsolationmax. 4A- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts6W- Diagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Rated load voltage (L)	AC 100/230V
 horizontal configuration up to 40°C max. 4A up to 60°C max. 3A vertical configuration up to 40°C max. 4A Isolation between channels and backplane bus between the channel no Insulation tested with AC4000V Current consumption from the backplane bus 190mA from the load voltage L1 (without load) max. 15mA Power dissipation of the module 6W Status, Interrupts, Diagnostics Interrupts Diagnosis functions Sum error display red F-LED green LED green LED 	Frequency range	47 63Hz
up to 40°Cmax. 4Aup to 60°Cmax. 3A- vertical configurationmax. 4Aup to 40°Cmax. 4AIsolationmax. 4A- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics190mAInterruptsparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Total current of the outputs	
up to 60°Cmax. 3A- vertical configuration up to 40°Cmax. 4AIsolationmax. 4AIsolationyes- between channels and backplane bus - between the channelyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, DiagnosticsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	- horizontal configuration	
- vertical configuration up to 40°Cmax. 4AIsolationmax. 4AIsolationyes- between channels and backplane bus - between the channelyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics190mAInterruptsparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	up to 40°C	max. 4A
up to 40°Cmax. 4AIsolation between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics190mAInterrupts Diagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	up to 60°C	max. 3A
IsolationJestimation- between channels and backplane busyes- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics190mAInterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	- vertical configuration	
 between channels and backplane bus between the channel no Insulation tested with AC4000V Current consumption from the backplane bus from the load voltage L1 (without load) max. 15mA Power dissipation of the module 6W Status, Interrupts, Diagnostics Interrupts Diagnosis error Diagnosis functions Sum error display Error power supply red F-LED green LED 	up to 40°C	max. 4A
- between the channelnoInsulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics100mAInterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	Isolation	
Insulation tested withAC4000VCurrent consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics6WInterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	- between channels and backplane bus	yes
Current consumption190mA- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics6WInterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	- between the channel	no
- from the backplane bus190mA- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, DiagnosticsInterruptsInterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	Insulation tested with	AC4000V
- from the load voltage L1 (without load)max. 15mAPower dissipation of the module6WStatus, Interrupts, Diagnostics1000000000000000000000000000000000000	Current consumption	
Power dissipation of the module6WStatus, Interrupts, DiagnosticsInterruptsInterruptsparameterizableDiagnosis errorparameterizableDiagnosis functionsred F-LED- Error power supplygreen LED	- from the backplane bus	190mA
Status, Interrupts, DiagnosticsInterrupts- Diagnosis errorDiagnosis functions- Sum error display- Error power supplygreen LED	- from the load voltage L1 (without load)	max. 15mA
Interruptsparameterizable- Diagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Power dissipation of the module	6W
- Diagnosis errorparameterizableDiagnosis functionsred F-LED- Sum error displayred F-LED- Error power supplygreen LED	Status, Interrupts, Diagnostics	
Diagnosis functions - - Sum error display red F-LED - Error power supply green LED	Interrupts	
- Sum error display red F-LED - Error power supply green LED	- Diagnosis error	parameterizable
- Error power supply green LED	Diagnosis functions	
	- Sum error display	red F-LED
- Diagnostic information readable possible	- Error power supply	green LED
	- Diagnostic information readable	possible

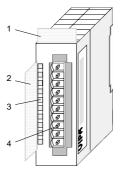
continued ...

Data for selecting an actuator	
Output voltage	
- at signal "1"	
at maximal current	L (-1.3V)
at minimal current	L (-0.7V)
Output current	
- at signal "1"	
Rated value	2A
permitted range for 0°C to 40°C	10mA up to 2A
permitted range for 40°C to 60°C	10mA up to 1.5A
- at signal "0" (leakage current)	100µA
Switch-off delay for resistive load	
- "0" to "1"	max. 1 AC cycle
- "1" to "0"	max. 1 AC cycle
Lamp load	max. 460W
Connecting two outputs in parallel	
- for redundant triggering of a load	not possible
- to increase performance	not possible
Short-circuit protection of output	yes, electronic
	(2A protected against sustained)

CC	ntinue

222-1HF00 - DO 8xRelay COM

Order data DO 8xRelay COM


VIPA 222-1HF00

Description The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via relay outputs. The module derives power from the backplane bus. The load voltage must be connected to terminal 1. When the total current exceeds 8A you have to balance the load current between terminals 1 and 10. The module has 8 channels and the status of each channel is displayed by means of an LED.

Properties

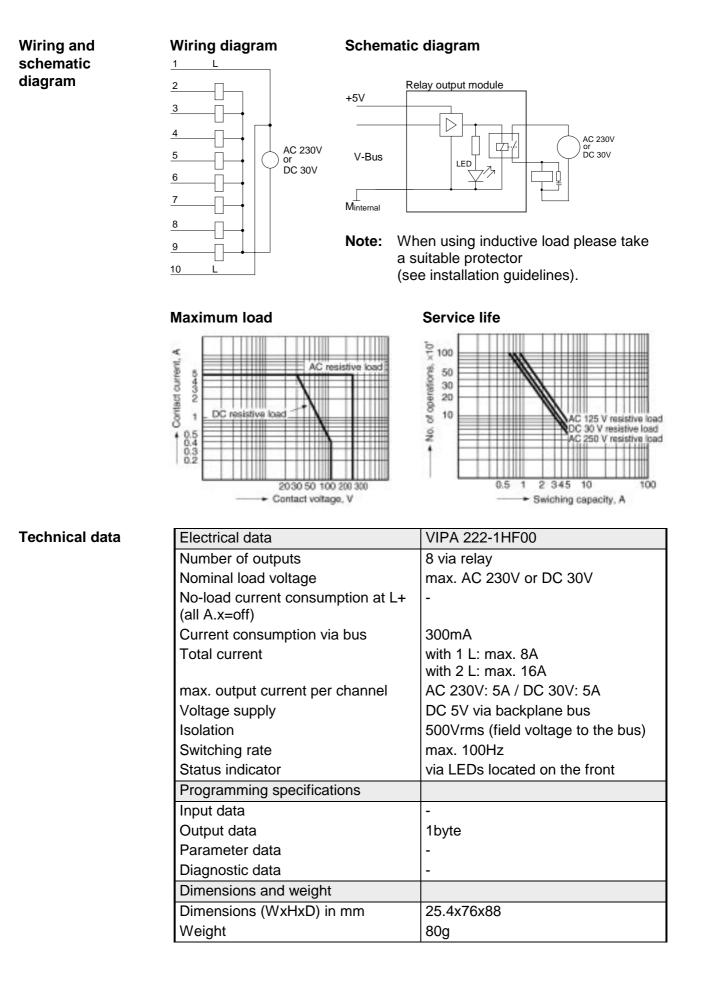
- 8 relay outputs
- Power supply via backplane bus
- External load voltage AC 230V / DC 30V
- Output current per channel 5A (AC 230V / DC 30V)
- Suitable for motors, lamps, magnetic valves and DC contactors
- Active channel indication by means of LED

Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description


.0.....7 LEDs (green) Q+0.0 to Q+0.7

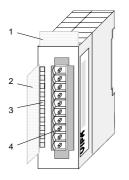
when an output is active the respective LED is turned on

Pin Assignment

- 1 Supply voltage L
- 2 Relay output Q+0.0
- 3 Relay output Q+0.1
- 4 Relay output Q+0.2
- 5 Relay output Q+0.3
- 6 Relay output Q+0.4
- 7 Relay output Q+0.5
- 8 Relay output Q+0.6
- 9 Relay output Q+0.7
- 10 Supply voltage L

222-1HD10 - DO 4xRelay

Order data DO 4xRelay

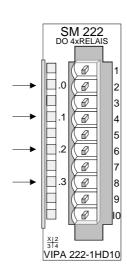

VIPA 222-1HD10

Description The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via relay outputs. The module derives power from the backplane bus. The module has 4 isolated channels that operate as switches and the status of each channel is displayed by means of a LED. Power required by active loads must be supplied externally.

Properties

- 4 isolated relay outputs
 - Power supply via backplane bus
 - External load voltage AC 230V / DC 30V (may be mixed)
 - Max. output current per channel 5A (AC 230V / DC 30V)
 - Suitable for motors, lamps, magnetic valves and DC contactors
 - Active channel indication by means of an LED

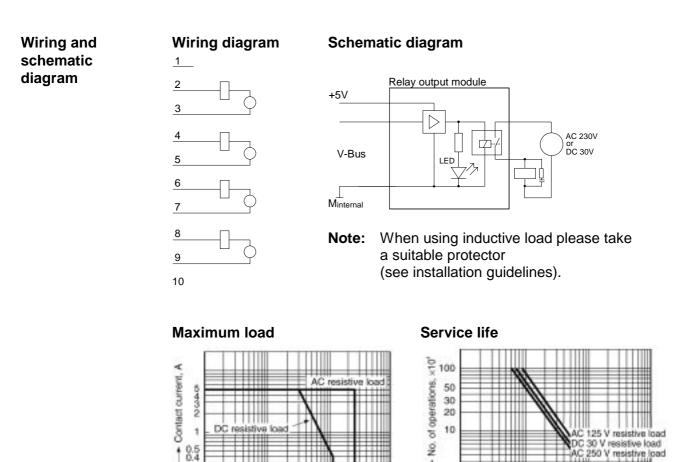
Construction



- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description


.0.....3 LEDs (green) Q+0.0 to Q+0.3 when an output is active the respective LED is turned on

Pin Assignment

1	not connected
2+3	Relay output Q+0.0
4+5	Relay output Q+0.1
617	

- 6+7 Relay output Q+0.2
- 8+9 Relay output Q+0.3
- 10 not connected

1111

2030 50 100 200

+ Contact voltage, V

0.5

Technical	data
reonnour	autu

Electrical data	VIPA 222-1HD10
Number of outputs	4 via relay
Nominal load voltage	AC 230V or max. DC 30V
max. output current	AC 230V: 5A / DC 30V: 5A
Current consumption	160mA
via backplane bus	
Voltage supply	DC 5V via backplane bus
Isolation	500Vrms (field voltage to the bus)
Switching rate	max. 100Hz
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	1byte (bit 0 bit 3)
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	80g

4

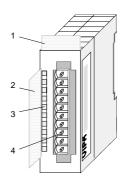
0.5 1 2 345 10

+ Swiching capacity, A

100

222-1HD20 - DO 4xRelay bistable

Order data DO 4xRelay bistable


VIPA 222-1HD20

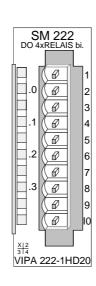
Description The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via bistable relay outputs. The module derives power from the backplane bus. The module has 4 channels that operate as switches. The status of the respective switch is retained if the power from the controlling system fails.

Properties

- 4 isolated relay outputs
- Power supply via backplane bus
- External load voltage AC 230V / DC 30V (may be mixed)
- Max. Output current per channel 16A (AC 230V / DC 30V)
- Suitable for motors, lamps, magnetic valves and DC contactors

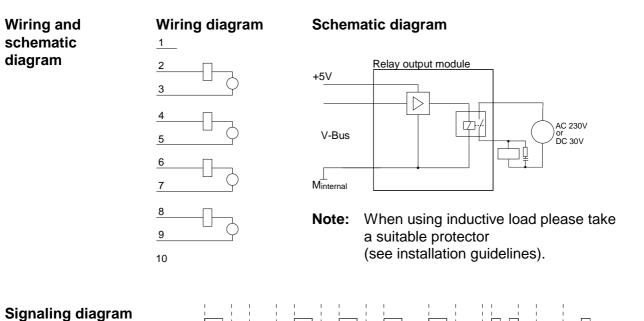
Construction

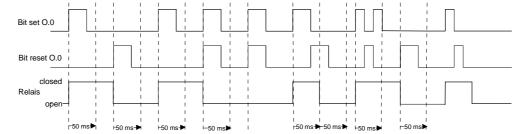
- [1] Label for module description
- [2] Label for the bit address with description
- [3] LEDs (not used)
- [4] Edge connector


Output byte / Pin assignment

Bit Description	o n
-----------------	------------

Bit 0	set Q+0.0
Bit 1	set Q+0.1
Bit 2	set Q+0.2
Bit 3	set Q+0.3
Bit 4	reset Q+0.0
Bit 5	reset Q+0.1
Bit 6	reset Q+0.2
Bit 7	reset Q+0.3


Setting the Bits 0...3 activates the concerning channel.


Setting Bits 4..7 causes a reset of the concerning channel after min. 50ms.

Pin Assignment

- 1 not connected
- 2+3 Relay output Q+0.0
- 4+5 Relay output Q+0.1
- 6+7 Relay output Q+0.2
- 8+9 Relay output Q+0.3
- 10 not connected

Note!

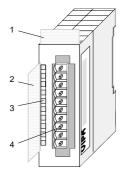
Please remember that a relay output that has been set may only be reset after at least 50ms when the set-signal has been removed.

Technical data

Electrical data	VIPA 222-1HD20
Number of outputs	4 via relay
Nominal load voltage	AC 230V or DC 30V
max. output current per channel	AC 230V: 16A / DC 30V: 16A
Current consumption via backplane bus	200mA
Voltage supply	DC 5V via backplane bus
Isolation	500Vrms (field voltage to the bus)
Switching rate	max. 100Hz
Status indicator	-
Programming specifications	
Input data	-
Output data	1byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	80g

222-1FF00 - DO 8xSolid State COM

Order data DO 8xSolid State COM

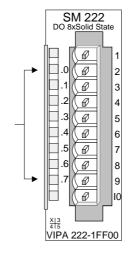

VIPA 222-1FF00

Description The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via solid-state relay outputs. The module derives power from the backplane bus. The module has 8 channels that are interconnected via the load voltage that act as switches and display the status by means of LEDs. Solid-state relays change state when the load voltage passes through zero (AC).

Properties

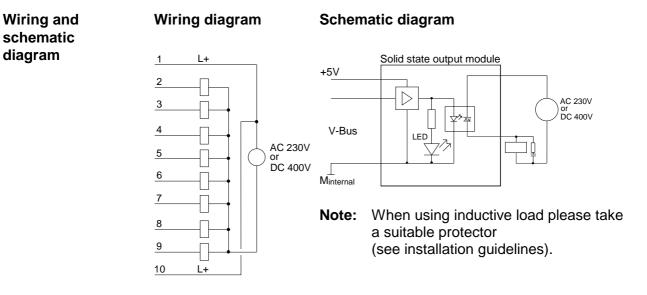
- 8 solid-state outputs with active channel indication by means of a LED
 - Extended service life due to the fact that the load voltage (provided this is AC) is switched when it passes through zero
 - External load voltage AC 230V or DC 400V
 - Max. output current per channel 0.5A (AC 230V / DC 400V)
 - Suitable for small motors, lamps, magnetic valves and contactors

Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

- LED Description
- .07 LEDs (green)


Q+0.0 to Q+0.7

when an output is active the respective LED is turned on

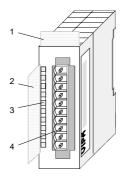
Pin	Assignment
	Assignment

- Supply voltage
 Output Q+0.0
 Output Q+0.1
 Output Q+0.2
 Output Q+0.3
- 6 Output Q+0.47 Output Q+0.5
- 7 Output Q+0.58 Output Q+0.6
- 9 Output Q+0.7
- 10 Supply voltage

Electrical data	VIPA 222-1FF00
Number of outputs	8 via solid-state
Nominal load voltage	AC 230V or DC 400V
max. output current per channel	AC 230V: 0.5A / DC 400V: 0.5A
Contact resistance	typ. 2.1Ω , max. 3.2Ω
Current consumption via backplane bus	150mA
Voltage supply	DC 5V via backplane bus
Isolation	500Vrms (field voltage to the bus)
Switching rate	max. 100Hz
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	1byte (bit 0 bit 7)
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	80g

222-1FD10 - DO 4xSolid State

Order data DO 4xSolid State

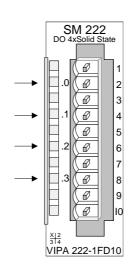

VIPA 222-1FD10

Description The digital output module accepts binary control signals from the central bus system and controls the connected loads at the process level via solid-state relay outputs. The module derives power from the backplane bus. The module has 4 separate channels that operate as switches and display the status by means of LEDs. Active loads must be supplied with external power.

Properties

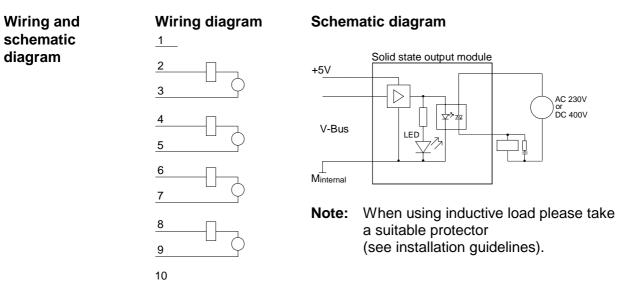
- 4 isolated solid-state outputs
 - Power supply via backplane bus
 - External load voltage AC 230V or DC 400V
 - Max. output current per channel 0.5A (AC 230V / DC 400V)
 - Suitable for motors, lamps, magnetic valves and contactors
 - Active channel indication by means of an LED

Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

LED Description

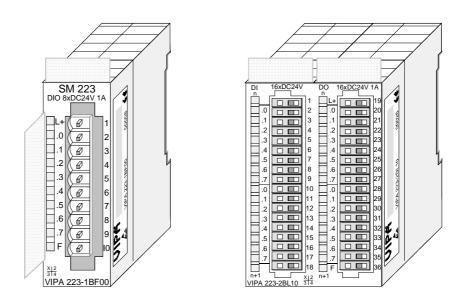

.0.....3 LEDs (green)

Q+0.0 to Q+0.3 when an output is active the respective LED is turned on

. .	• •
Pin	Assignment

- 1not connected2+3Output Q+0.0
- 4+5 Output Q+0.1
- 6+7 Output Q+0.2
- 8+9 Output Q+0.3
- 10 not connected

Electrical data	VIPA 222-1FD10
Number of outputs	4 via solid state
Nominal load voltage	AC 230V or DC 400V
max. output current per channel	AC 230V: 0.5A / DC 400V: 0.5A
Current consumption via backplane bus	100mA
Voltage supply	DC 5V via backplane bus
Isolation	500Vrms (field voltage to the bus)
Switching rate	max. 100Hz
Status indicator	via LEDs located on the front
Programming specifications	
Input data	-
Output data	1byte (bit 0 bit 3)
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	80g


Chapter 5 Digital input/output modules

Overview This chapter contains a description of the construction and the operation of the VIPA digital input/output modules.

Contents	Торіс		Page
	Chapter 5	Digital input/output modules	5-1
	System ov	erview	5-2
	Security h	nts for DIO modules	5-2
	223-1BF0	0 - DIO 8xDC 24V 1A	5-3
	223-2BL10) - DI 16xDC 24V, DO 16xDC 24V 1A	5-5

System overview

Input/output modules SM 223

Order data	Туре	Order number	Page
input/output	DIO 8xDC 24V 1A	VIPA 223-1BF00	5-3
modules	DI 16xDC 24V, DO 16xDC 24V 1A	VIPA 223-2BL10	5-5

Security hints for DIO modules

Attention!

Please regard that the voltage applied to an output channel must be \leq the voltage supply applied to L+.

Due to the parallel connection of in- and output channel per group, a set output channel may be supplied via an applied input signal.

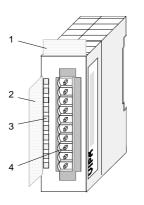
Thus, a set output remains active even at power-off of the voltage supply with the applied input signal.

Non-observance may cause module demolition.

223-1BF00 - DIO 8xDC 24V 1A

DIO 8xDC 24V 1A Order data

Description This module is a combination module. It has 8 channels that may be used as input or as output channel. The status of the channels is displayed by means of LEDs. Every channel is provided with a diagnostic function, i.e. when an output is active the respective input is set to "1". When a short circuit occurs at the load, the input is held at "0" and the error is detectable by analyzing the input.

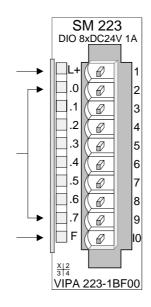

Properties

8 channels, isolated from the backplane bus (as input or output)

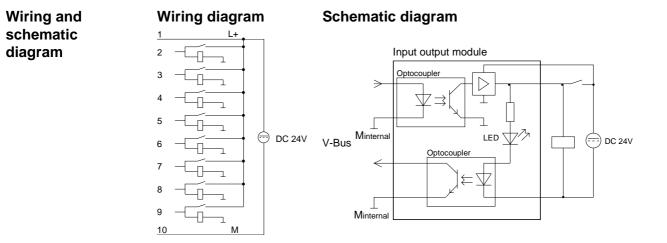
VIPA 223-1BF00

- Diagnostic function
- Nominal input voltage DC 24V / supply voltage DC 24V
- Output current 1A
- LED error display for overload, overheat or short circuit
- Active channels displayed by means of LED

Construction



- [1] Label for the module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


Status indicator pin assignment

LED Description

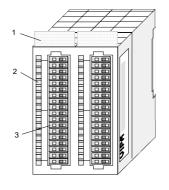
- L+ LED (green) Supply voltage available
- .07 LEDs (green) when the input signal is "1" or the output is active the respective LED is turned on
 - F LED (red) Overload, overheat or short circuit error

- 1 +DC 24V supply voltage
- 2 I/Q+0.0
- 3 I/Q+0.1
- 4 I/Q+0.2
- 5 I/Q+0.3
- 6 I/Q+0.4 7
- I/Q+0.5 8
- I/Q+0.69
 - I/Q+0.7
- 10 Supply ground

Electrical data	VIPA 223-1BF00
Number of channels	8
Rated load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	50mA
Output current per channel	1A protected against short circuits
Total output current	12A
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Voltage supply	DC 5V via backplane bus
Current consumption (backplane bus)	65mA
Data width in the process image	1byte PII, 1byte PIQ
Status indicator	via LEDs located on the front
Programming specifications	
Input data	1byte
Output data	1byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88
Weight	50g

223-2BL10 - DI 16xDC 24V, DO 16xDC 24V 1A

Order data DI 16xDC 24V, DO 16xDC 24V 1A VIPA 223-2BL10


Description The module has 32 channels that are isolated from the backplane bus. 16 channels operate as inputs and 16 as outputs. The status of the channels is displayed by means of LEDs.

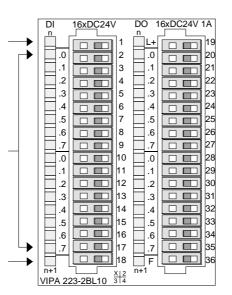
• 32 channels, of these 16 input and 16 output channels

- Nominal input voltage DC 24V
- Supply voltage DC 24V(external) for outputs
- Output current 1A per channel
- LED error display for overload, overheat or short circuit
- Active channels displayed by means of an LED

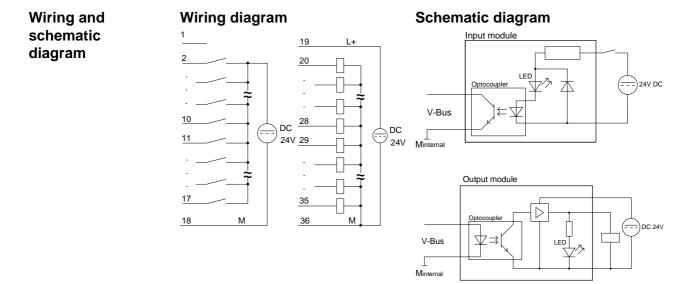
Construction

Properties

- [1] Label for the module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


Status indicator pin assignment

LED Description

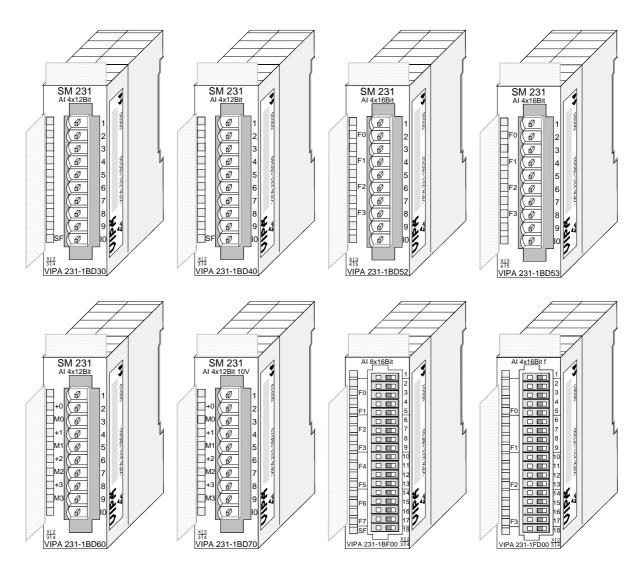

- L+ LED (green) Supply voltage available
- .07 LED (green) I+0.0 ... I+1.7 Q+0.0 ... Q+1.7

when the signal (input) is "1" or the output is active, the respective LED is turned on

F LED (red) Overload, overheat or short circuit error

Pin	Assignment
1	not connected
2	Input I+0.0
•	
. —	·
17	Input I+1.7
18	Ground for inputs
19	Supply voltage +24V
20	Output Q+0.0
35	Output Q+1.7
36	Supply voltage ground outputs

Electrical data	VIPA 223-2BL10
Number of channels	32
Rated load voltage	DC 24V (20.4 28.8V)
No-load current consumption at L+ (all A.x=off)	10mA
Output current per channel	1A protected against short circuits
max. contact load per connector	10A
Switch rate	
- for resistive load	max. 1kHz
- for ind. load (IEC947-5-1, DC13)	max. 0.5Hz
- for lamp load	max. 10Hz
Limit (internal) of the inductive circuit interruption voltage	typ. L+ (-52V)
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input current	typ. 7mA
Voltage supply	DC 5V via backplane bus
Current consumption (backplane bus)	120mA
Data width in the process image	2byte PII, 2byte PIQ
Status indicator	via LEDs located on the front
Programming specifications	
Input data	2byte
Output data	2byte
Parameter data	-
Diagnostic data	-
Dimensions and weight	
Dimensions (WxHxD) in mm	50.8x76x88
Weight	100g


Chapter 6 Analog input modules

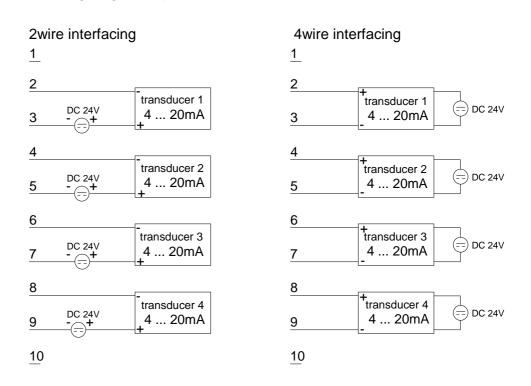
Overview This chapter contains a description of the construction and the operation of the VIPA analog input modules.

System overview

Input modules SM 231

Order data
input modules

Туре	Order number	Page
AI4x12Bit ±10V - ECO,	VIPA 231-1BD30	6-6
AI4x12Bit 4 20mA, ±20mA - ECO	VIPA 231-1BD40	6-11
AI4x16Bit, multiinput	VIPA 231-1BD52	6-16
AI4x16Bit, multiinput	VIPA 231-1BD53	6-24
AI4x12Bit, 4 20mA, isolated	VIPA 231-1BD60	6-38
AI4x12Bit, ±10V, isolated	VIPA 231-1BD70	6-41
Al8x16Bit	VIPA 231-1BF00	6-44
Al4x16Bit f	VIPA 231-1FD00	6-54


General

sensor

Cabling for analog signals You must only use screened cable when you are connecting analog signals. These cables reduce the effect of electrical interference. The screen of the analog signal cable should be grounded at both ends. When there are potential differences between the cable ends, there may flow a current will to equalize the potential difference. This current could interfere with the analog signals. Under these circumstances it is advisable to ground the screen of the signal cable at one end only.

ConnectingOur analog input modules provide a large number of input configurationscurrentfor 2- and 4wire transducers.

Please remember that sensors require an external power supply. You have to connect an external power supply in line with any 2wire sensor. The following diagram explains the connection of 2- and 4wire sensors:

Note!

Please ensure that you connect the sensors with the correct polarity! Unused inputs should be short circuited by placing a link between the positive pole and the common ground for the channel.

Parameterization and diagnosis during runtime

By using the SFCs 55, 56 and 57 you may change the parameters of the analog modules during runtime via the CPU 21x.

For diagnosis evaluation during runtime, you may use the SFCs 51 and 59. They allow you to request detailed diagnosis information and to react to it.

Numeric notation
in S5 fromIn S5 format, the input data are stored in one word. The word consists of
the binary value and the information bits.SiemensPlease regard only the Siemens S7 format (two's complement) is

supported by the Siemens SIMATIC manager for decimal representation. When the Siemens S5 format is used the decimal values are incorrectly represented.

Numeric notation:

Byte	Bit 7 Bit 0
0	Bit 0: overflow bit
	0: value within measuring range
	1: measuring range overrun
	Bit 1: error bit (set at internal error)
	Bit 2: activity bit (always 0)
	Bit 7 3: binary measured value
1	Bit 6 0: binary measured value
	Bit 7: sign
	0 positive
	1 negative

+/- 10V (two's complement)

Voltage	Decimal	Hex
-10V	-16384	C000
-5V	-8192	E000
0V	0	0000
5V	8192	2000
10V	16384	4000

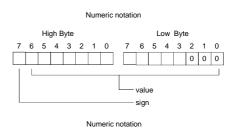
+/- 10V (value and sign)

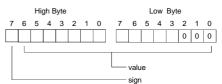
······································			
Voltage	Decimal	Hex	
-10V	-16384	C000	
-5V	-8192	A000	
0V	0	0000	
5V	8192	2000	
10V	16384	4000	

4....20mA (value and sign)

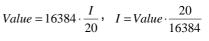
Current	Decimal	Hex
4mA	0	0000
12mA	8192	2000
20mA	16384	4000

+/- 20mA (two's complement)

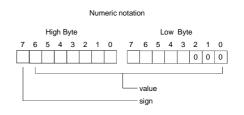

Current	Decimal	Hex
-20mA	-16384	C000
-10mA	-8192	E000
0mA	0	0000
10mA	8192	2000
20mA	16384	4000


+/- 20mA (value and sign)

Current	Decimal	Hex
-20mA	-16384	C000
-10mA	-8192	A000
0mA	0	0000
10mA	8192	2000
20mA	16384	4000


Formulas for the calculation:

$Value = 16384 \cdot \frac{U}{2},$	$U = Value \cdot \frac{10}{10}$
10	16384
U: voltage, Value:	Decimal value



Formula for the calculation:

I: Current, Value: Decimal value

Numeric notation in S7 from Siemens

Analog values are represented as a two's complement value.

Byte	Bit 7 Bit 0	
0	Bit 7 0: binary measured value	
1	Bit 6 0: binary measured value	
	Bit 7: sign	
	0 positive	
	1 negative	

+/- 10V

+/- 100		
Voltage	Decimal	Hex
-10V	-27648	9400
-5V	-13824	CA00
0V	0	0
5V	13824	3600
10V	27648	6C00
0 10)/		

0...10V

Voltage	Decimal	Hex
0V	0	0000
5V	13824	3600
10V	27648	6C00

15V			
Decimal	Hex		
0	0		
13824	3600		
27648	6C00		
	0 13824		

+/-4V

Voltage	Decimal	Hex
-4V	-27648	9400
0V	0	0
4V	27648	6C00

+/-400mV

Voltage	Decimal	Hex
-400mV	-27648	9400
0V	0	0
400mV	27648	6C00

4....20mA

Current	Decimal	Hex
4mA	0	0
12mA	13824	3600
20mA	27648	6C00

+/- 20mA

Current	Decimal	Hex
-20mA	-27648	9400
-10mA	-13824	CA00
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

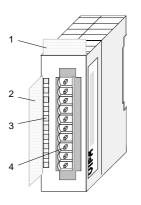
Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}, \quad U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U-1}{4}, \quad U = Value \cdot \frac{4}{27648} + 1$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U}{4}$, $U = Value \cdot \frac{4}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U}{400}, \quad U = Value \cdot \frac{400}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, \quad I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{I}{20}, \quad I = Value \cdot \frac{20}{27648}$ I: current, Value: decimal value

231-1BD30 - AI 4x12Bit ±10V - ECO

Order data AI 4x12Bit, ±10V

VIPA 231-1BD30

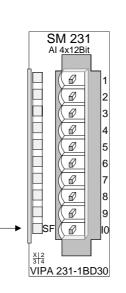

Description The module has 4 inputs that you may configure individually. This module requires a total of 8byte of the process image for the input data (2byte per channel).

DC/DC converters provide electrical isolation for the channels of the module with respect to the backplane bus.

Properties

- 4 inputs, channels isolated from the backplane bus
 - the different channels are individually configurable and may be turned off
 - Suitable for transducers with ±10V outputs
 - LED leave end overdrive region or leave end underdrive region or wrong parameterization

Construction

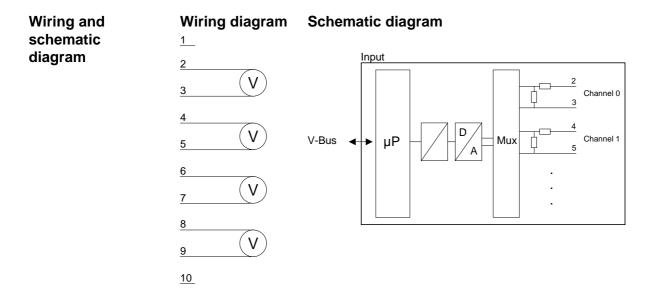


- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Pin assignment

LED Description

- SF LED (red) Sum error at:
 - Leave end of overdrive region or end of underdrive region
 - wrong parameterization



Pin Assignment

1

10

- 2 pos. connection Channel 0
- 3 Channel 0 common
- 4 pos. connection Channel 1
- 5 Channel 1 common
- 6 pos. connection Channel 2
- 7 Channel 2 common
- 8 pos. connection Channel 3
- 9 Channel 3 common

Attention!

Temporarily not used inputs have to be connected with the concerning ground at activated channel. When deactivating unused channels by means of FFh, this is not required.

Measurement dataDuring a measurement the data is stored in the data input area.acquisitionThe following figure shows the structure of the data input area:

Data input area:	Data	input	area:
------------------	------	-------	-------

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Parameter data Every channel is individual parameterizable. For the parameterization, 10byte parameterization data are available. The parameterization data are stored permanently and remain also in off mode. By using the SFC 55 "WR_PARM" you may alter the parameterization in the module during runtime. The time needed until the new parameterization is valid can last up to 60ms. During this time, the measuring value output is 7FFFh. The following table shows the structure of the parameter data:

Parameter area:

Byte	Bit 7 Bit 0	Default
0, 1	reserved	00h
2	Function-no. channel 0	28h
3	Function-no. channel 1	28h
4	Function-no. channel 2	28h
5	Function-no. channel 3	28h
69	reserved	00h

Function-no.For each channel here the function-no. of your measuring function can be
set. Please see the according table.

The function-no. 00h does not influence the function-no. stored in the permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Measurement range / representation
00h	Does not affect permanently stored configuration data	
28h	Voltage ±10V	±11.76V /
	Siemens S7 format	11.76V= max. value before over range (32511)
	(two's complement)	-1010V= nominal range (-2764827648)
		-11.76V= min. value before under range (-32512)
2Bh	Voltage ±10V	±12.50V /
	Siemens S5 format	12.50V = max. value before over range (20480)
	(value and sign)	-1010V = rated range (-1638416384)
		-12.50V = min. value before under range (-20480)
3Bh	Voltage ±10V	±12.50V /
	Siemens S5 format	12.50V = max. value before over range (20480)
	(two's complement)	-1010V = nominal range (-1638416384)
		-12.50V = min. value before under range (-20480)
FFh	Channel not active (turned off)	

Note!

The module is preset to the range " $\pm 10V$ voltage" in S7 format from Siemens.

Module specific Data	VIPA 231	-1BD30
Number of inputs	4	
Length of cable: shielded	200m	
Voltages, Currents, Potentials		
Isolation		
- channels / backplane bus	ує	S
- between channels	n	
Permitted potential difference		
- between the inputs (U _{CM})	DC	2V
- between the inputs and		
M _{INTERN} (U _{ISO})	DC 75V /	AC 60V
Isolation tested with	DC 5	00V
Current consumption		
- from the backplane bus	120	mA
Dissipation power of the module	0.6	W
Analog value generation		
Measuring principle	SAR (Successive approximation)	
programmable	yes	
conversion time/resolution (per chann	nel)	
- Basic conversion time (ms)	n x 2ms	
- Resolution (Bit) incl. overrange	13bit	
Noise suppression, limits of error		
Noise suppression for f=n x (f1 ±1%) (f1=interference frequency, n=1,2,)	f=50Hz400Hz	
Common-mode interference (U _{CM} < 2V)	> 80)dB
Crosstalk between the inputs	> 50)dB
Operational limit (in the entire temper	ature range, with reference to	the input range)
· · · · · · · · · · · · · · · · · · ·	Measuring range	Tolerance
Voltage input	±10V	±0.2%
Basic error (operational limit at 25°C,	referred to input range)	
· · · · · · · · · · · · · · · · · · ·	Measuring range	Tolerance
Voltage input	±10V	±0.1%
Temperature error		
(with reference to the input range)	±0.00	⊃%/K
Linearity error	.0.000/	
(with reference to the input range)	±0.02%	
Repeatability (in steady state at		
25°C, with reference to the input		
range)		
Diagnostics	n	0
Diagnostic interrupt	none	
Sum error	red SF	LED
n= Number of channels	red SF LED	

n=Number of channels

continued ...

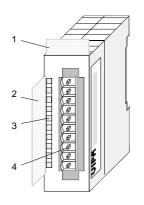
... continue technical data

Data for selecting a sensor			
	Input range Input resistance		
Voltage	±10V 100kΩ		
Maximum input voltage for voltage			
input (destruction limit)	max. 30V		
Connection of the sensor			
for measuring voltage	possible		
Permissible environment conditions			
Operating temperature	0°C+60°C		
Transport and storage temperature	-25°C+70°C		
relative humidity	95% without condensation		
Vibration/Shock resistance	acc. IEC 68000-2-6/IEC 68000-2-27		
EMC resistance	acc. IEC 61000-4-2 /		
ESD/Burst	IEC 61000-4-2 /		
	IEC 61000-4-4 (to level 3)		
Project engineering			
Input data	8byte (1 Word	d per channel)	
Output data	-		
Parameter data	10byte		
Diagnostics data	-		
Dimensions and Weight	jht		
Dimensions (WxHxD in mm)	25.4x76x88mm		
Weight	ca. 80g		

231-1BD40 - AI 4x12Bit 4...20mA, ±20mA - ECO

Order data AI 4x12Bit, 4...20mA, ±20mA

VIPA 231-1BD40

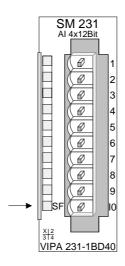

Description The module has 4 inputs that you may configure individually. This module requires a total of 8byte of the process image for the input data (2byte per channel).

DC/DC converters are employed to provide electrical isolation for the channels of the module with respect to the backplane bus.

Properties

- 4 inputs, channels isolated from the backplane bus
- the different channels are individually configurable and may be turned off
- Suitable for transducers with 4...20mA, ±20mA outputs
- LED leave end overdrive region or leave end underdrive region or wrong parameterization

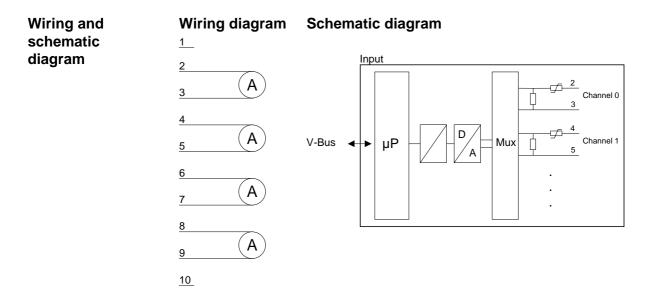
Construction


- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator pin assignment

- LED Description
- SF LED (red)

Sum error at:


- Leave end of overdrive region or leave end of underdrive region
- or wrong parameterization

Pin Assignment

1

- 2 pos. connection Ch. 0
- 3 Channel 0 common
- 4 pos. connection Ch.1
- 5 Channel 1 common
- 6 pos. connection Ch.2
- 7 Channel 2 common
- 8 pos. connection Ch.3
- 9 Channel 3 common

Attention!

Data input area:

Temporarily not used inputs have to be connected with the concerning ground at activated channel. When deactivating unused channels by means of FFh, this is not required.

Measurement data acquisition

During a measurement the data is stored in the data input area:

1	
Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3
-	Low-Byte channel 2 High-Byte channel 3

Parameter data Every channel is individual parameterizable. For the parameterization, 10byte parameterization data are available. The parameterization data are stored permanently and remain also in off mode. By using the SFC 55 "WR_PARM" you may alter the parameterization in the module during runtime. The time needed until the new parameterization is valid can last up to 60ms. During this time, the measuring value output is 7FFFh.

The following table shows the structure of the parameter data:

Parameter area:

Byte	Bit 7 Bit 0	Default
0, 1	reserved	00h
2	Function-no. channel 0	2Ch
3	Function-no. channel 1	2Ch
4	Function-no. channel 2	2Ch
5	Function-no. channel 3	2Ch
69	reserved	00h

Function-no.For each channel here the function-no. of your measuring function can be
set. Please see the according table.The function-no. 00h does not influence the function-no. stored in the

permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Measurement range / representation		
00h	Does not affect permanently stored configuration data			
2Ch	Current ±20mA Siemens S7 format (two's complement)	± 23.52 mA / 23.52mA = max. value before over range (32511) -2020mA = rated value (-2764827648) -23.52mA = min. value before under range (-32512)		
2Dh	Current 420mA Siemens S7 format (two's complement)	1.185 +22.81mA / 22.81mA = max. value before over range (32511) 420mA = rated range (027648) 1.185 mA = min. value before under range (-4864)		
2Eh	Current 420mA Siemens S5 format (value and sign)	0.8 +24.00mA / 24.00mA = max. value before over range (20480) 4 20mA = rated range (016384) 0.8mA = min. value before under range (-3277)		
2Fh	Current ±20mA Siemens S5 format (value and sign)	±25.00mA / 25.00mA = max. value before over range (20480) -2020mA = rated value (-1638416384) -25.00mA = min. value before under range (-20480)		
39h	Current 420mA Siemens S5 format (two's complement)	0.8 +24.00mA / 24.00mA = max. value before over range (20480) 4 20mA = rated range (016384) 0.8mA = min. value before under range (-3277)		
3Ah	Current ±20mA Siemens S5 format (two's complement)	±25.00mA / 25.00mA = max. value before over range (20480) -2020mA = nominal range (-1638416384) -25.00mA = min. value before under range (-20480)		
FFh	Channel not active (turned off)			

Note!

The module is preset to the range " $\pm 20 \text{mA}$ current" in S7-format from Siemens.

Module specific Data	VIPA 231-1BD40		
Number of inputs	4		
Length of cable: shielded			
Voltages, Currents, Potentials	200		
Isolation			
- channels / backplane bus	yes		
- between channels	no		
Permitted potential difference			
- between the inputs (U_{CM})	DC 2V		
- between the inputs and			
M _{INTERN} (U _{ISO})	DC 75V / AC 60V		
Isolation tested with	DC 500V		
Current consumption			
 from the backplane bus 	120mA		
Dissipation power of the module	0.6W		
Analog value generation			
Measuring principle	SAR (Successive approximation)		
programmable	yes		
conversion time/resolution			
(per channel)	n x 2ms		
- Basic conversion time (ms)			
- Resolution (Bit) incl. overrange	13bit		
Noise suppression, limits of error			
Noise suppression for f=n x (f1 ±1%) (f1=interference frequency, n=1,2,)	f=50Hz400Hz		
Common-mode interference			
$(U_{CM} < 2V)$	> 80dB		
Crosstalk between the inputs	> 50dB		
Operational limit		-	
(in the entire temperature range, with	reference to the input range)		
	Measuring range	Tolerance	
Current input	±20mA	±0.2%	
•	420mA	±0.5%	
Basic error (operational limit at 25°C,	referred to input range)		
· · ·	Measuring range	Tolerance	
Current input	±20mA	±0.1%	
	420mA	±0.2%	
Temperature error	±0.005%/K		
(with reference to the input range)			
Linearity error	±0.02%		
(with reference to the input range)			
Repeatability	±0.05%		
(in steady state at 25°C, with			
reference to the input range)			
Diagnostics	no		
Diagnostic interrupt	none		
Sum error	red SF LED		
n=Number of channels			

n=Number of channels

continued ...

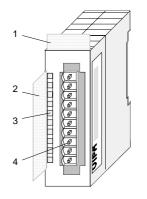
... continue technical data

Data for selecting a sensor		
	Input range	Input resistance
Current	±20mA	110Ω
	420mA	110Ω
Maximum input current for current	40	mA
input (destruction limit)	40	
Connection of the sensor		
for measuring current		
as 2wire transmitter	possible, with e	external supply
as 4wire transmitter	pos	sible
Permissible environment conditions		
Operating temperature	0°C	+60°C
Transport and storage temperature	-25°C	.+70°C
relative humidity	95% without	condensation
Vibration/Shock resistance	acc. IEC 68000-2-	6/IEC 68000-2-27
EMC resistance		1000-4-2 /
ESD/Burst	IEC 6100	
	IEC 61000-4	-4 (to level 3)
Project engineering		
Input data	8byte (1 Word	d per channel)
Output data		-
Parameter data	10b	oyte
Diagnostics data	-	-
Dimensions and Weight		
Dimensions (WxHxD in mm)	25.4x76	Sx88mm
Weight	Ca.	80g

231-1BD52 - AI 4x16Bit, multiinput

Order data AI 4x16Bit multiinput

VIPA 231-1BD52


Description The module has got 4 inputs that you may configure individually. The module requires a total of 8 input data bytes in the process image (2byte per channel).

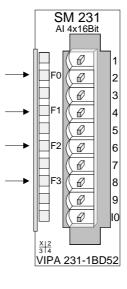
Isolation between the channels on the module and the backplane bus is provided by means of DC/DC converters and optocouplers.

• the different channels are individually configurable and may be turned off

- the common signal inputs of the channels are not isolated from each other and the permitted potential difference is up to 5V
- · LED for cable break and over current in sensor circuits
- diagnostic function

Construction

- [1] Label for module description
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


Status indicators pin assignment

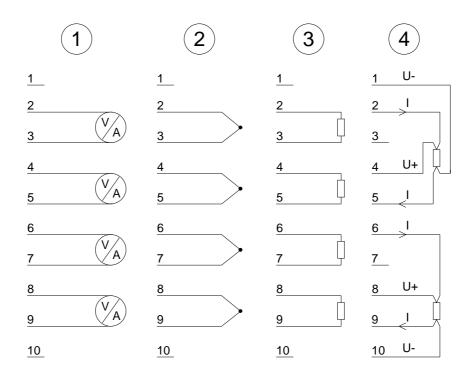
LED Description

F0 ... F3 LED (red):

turned on when an open circuit exists on the 4...20mA sensor circuits

blinks when the current > 40mA at all current sensor circuits

Pin Assignment


- 1 For 4wire systems channel 0
- 2 + channel 0
- 3 Channel 0 common
- 4 + channel 1
- 5 Channel 1 common
- 6 + channel 2
- 7 Channel 2 common
- 8 + channel 3
- 9 Channel 3 common
- 10 For 4wire systems channel 2

Wiring diagrams

The following illustration shows the connection options for the different measuring ranges. The assignment to the measuring ranges is to find in the column "Conn." of the table "Function-no. assignment" on the next pages.

Note!

Please note that the module 231-1BD52 was developed from the VIPA 231-1BD50. The measuring function no longer starts at 00h but it is offset by one to 01h.

Attention!

Temporarily not used inputs have to be connected with the concerning ground at activated channel. When deactivating unused channels by means of FFh, this is not required.

The following circumstances may cause damages at the analog module:

- The external supply of the input (current/voltage) <u>must not</u> be present as long as the backplane bus of the CPU is still without current supply!
- Parameterization and connection of the input must be congruent!
- You must not apply a voltage >15V to the input!

Function-no.The assignment of a function-no. to a certain channel happens during
parameterization. The function-no. 00h does not influence the function-no.
stored in the permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Measurement range / representation	Tolerance	Conn.
00h	Does not affect permanentl	y stored configuration data		
			1)2)3)	
01h	Pt100 in 2wire mode	-200 +850°C /	¹⁾²⁾³⁾ ±1°C	(3)
	Dt4 000 in Outing as a da	in units of 1/10°C, two's complement	¹⁾²⁾³⁾ ±1°C	(0)
02h	Pt1000 in 2wire mode	-200 +500°C /	¹⁾²⁾⁰⁾ ±1°C	(3)
0.0 h		in units of 1/10°C, two's complement	¹⁾²⁾³⁾ ±1°C	(0)
03h	NI100 in 2wire mode	-50 +250°C /	±1°C	(3)
04h	NI1000 in 2wire mode	in units of 1/10°C, two's complement	¹⁾²⁾³⁾ ±1°C	(2)
0411	NI 1000 IN 2wire mode	$-50 \dots + 250^{\circ}$ C /	, ,,, ±1°C	(3)
05h	Resistance measurement	in units of 1/10°C, two's complement	¹⁾²⁾³⁾ ±0.2%	(3)
0511	600hm 2wire		of final value	(3)
06h		60Ω= final value (32767)	¹⁾²⁾³⁾ ±0.1%	(2)
060	Resistance measurement 6000hm 2wire		of final value	(3)
07h	Resistance measurement	$600\Omega = \text{final value (32767)}$	¹⁾²⁾³⁾ ±0.1%	(2)
0711	30000hm 2wire		of final value	(3)
08h	Resistance measurement	3000Ω = final value (32767)	¹⁾²⁾³⁾ ±0.1%	(2)
0011	60000hm 2wire	-	of final value	(3)
09h	Pt100 via	6000Ω = final value (32767) -200 +850°C /	¹⁾²⁾ ±0.5°C	(4)
0911	4wire connection	in units of 1/10°C, two's complement	±0.5 C	(4)
0Ah	Pt1000 via	-200 +500°C /	¹⁾²⁾ ±0.5°C	(4)
UAII	4wire connection	in units of 1/10°C, two's complement	±0.5 C	(4)
0Bh	NI100 via	-50 +250°C /	¹⁾²⁾ ±0.5°C	(4)
UDII	4wire connection	in units of 1/10°C, two's complement	±0.5 C	(4)
0Ch	NI1000 via	-50 +250°C /	¹⁾²⁾ ±0.5°C	(4)
0011	4wire connection	in units of 1/10°C, two's complement	±0.5 C	(4)
0Dh	Resistance measurement	-/	¹⁾²⁾ ±0.1%	(4)
ODII	600hm 4wire	60Ω = final value (32767)	of final value	(+)
0Eh	Resistance measurement	-/	¹⁾²⁾ ±0.05%	(4)
0211	600Ohm 4wire	600Ω= final value (32767)	of final value	(-)
0Fh	Resistance measurement	-/	¹⁾²⁾ ±0.05%	(4)
0111	3000Ohm 4wire	$3000\Omega = \text{final value} (32767)$	of final value	(+)
10h	Thermocouple type J ,	-210°C 850°C /	¹⁾²⁾⁴⁾ ±1°C	(2)
1011	externally compensated	in units of 1/10°C, two's complement	±1 C	(2)
11h	Thermocouple type K,	-270°C 1200°C /	¹⁾²⁾⁴⁾ ±1.5°C	(2)
	externally compensated	in units of 1/10°C, two's complement	±1.5 O	(2)
12h	Thermocouple type N,	-200°C 1300°C /	¹⁾²⁾⁴⁾ ±1.5°C	(2)
1211	externally compensated	in units of 1/10°C, two's complement	±1.5 O	(2)
13h	Thermocouple type R,	-50°C 1760°C /	¹⁾²⁾⁴⁾ ±4°C	(2)
1011	externally compensated	in units of 1/10°C, two's complement	±+ 0	(-)
14h	Thermocouple type T,	-270°C 400°C /	¹⁾²⁾⁴⁾ ±1.5°C	(2)
• • • • •	externally compensated	in units of 1/10°C, two's complement	±1.0 0	(-)
15h	Thermocouple type S,	-50°C 1760°C /	¹⁾²⁾⁴⁾ ±5°C	(2)
	externally compensated	in units of 1/10°C, two's complement	U	(-)
18h	Thermocouple type J,	-210°C 850°C /	¹⁾²⁾⁵⁾ ±1.5°C	(2)
	internally compensated	in units of 1/10°C, two's complement	21.00	(-)
19h	Thermocouple type K,	-270°C 1200°C /	¹⁾²⁾⁵⁾ ±2°C	(2)
	internally compensated	in units of 1/10°C, two's complement	<u> </u>	(-)
1Ah	Thermocouple type N,	-200°C 1300°C /	¹⁾²⁾⁵⁾ ±2°C	(2)
	internally compensated	in units of 1/10°C, two's complement	<u> </u>	(-)
				tinuad

No.	Function	Measurement range / representation	Tolerance	Conn.
1Bh	Thermocouple type R,	-50°C 1760°C /	¹⁾²⁾⁵⁾ ±5°C	(2)
	internally compensated	in units of 1/10°C, two's complement		
1Ch	Thermocouple type T,	-270°C 400°C /	¹⁾²⁾⁵⁾ ±2°C	(2)
	internally compensated	in units of 1/10°C, two's complement	1)2)4)	(0)
1Dh	Thermocouple type S,	-50°C 1760°C /	¹⁾²⁾⁴⁾ ±5°C	(2)
076	internally compensated	in units of 1/10°C, two's complement	1) + 0.404	(4)
27h	Voltage 050mV Siemens S7 format	050 mV /	$^{1)}\pm0.1\%$	(1)
	(two's complement)	59.25mV = max. range before over range (32767) 050mV = nominal value (027648)	of final value	
28h	Voltage ±10V	±11.85V/	¹⁾ ±0.05%	(1)
2011	Siemens S7 format	11.85V = max. value before over range (32767)	of final value	(1)
	(two's complement)	-1010V = nominal range (-2764827648)		
	(two s complement)	-11.85V = min. value before under range (-32767)		
29h	Voltage ±4V		¹⁾ ±0.05%	(1)
2011	Siemens S7 format	4.74V = max. value before over range (32767)	of final value	(.)
	(two's complement)	-44V = rated range (-2764827648)		
		-4.74V = min. value before under range (-32767)		
2Ah	Voltage ±400mV	±474mV /	¹⁾ ±0.1%	(1)
	Siemens S7 format	474mV = max. value before over range (32767)	of final value	
	(two's complement)	-400400mV = rated range (-2764827648)		
		-474mV = min. value before under range (-32767)		
2Bh	Voltage ±10V	±11.85V /	¹⁾ ±0.2%	(1)
	Siemens S5 format	12.5V = max. value before over range (20480)	of final value	
	(value and sign)	-1010V = rated range (-1638416384)		
		-12.5V = min. value before under range (-20480)	1)	
2Ch	Current ±20mA	±23.70mA /	¹⁾ ±0.05%	(1)
	Siemens S7 format	23.70mA = max. value before over range (32767)	of final value	
	(two's complement)	-2020mA = rated value (-2764827648)		
2Dh	Current 420mA	-23.70mA = min. value before under range (-32767) 1.185 +22.96mA /	¹⁾ ±0.05%	(1)
2011	Siemens S7 format	22.96mA = max. value before over range (32767)	of final value	(1)
	(two's complement)	420mA = rated range (027648)		
	(two s complement)	0mA = min. value before under range (-5530)		
2Eh	Current 420mA	1.185 +22.96mA /	¹⁾ ±0.2%	(1)
	Siemens S5 format	22.96mA = max. value before over range (20480)	of final value	(.)
	(two's complement)	420mA = rated range (016384)		
		0mA = min. value before under range (-4096)		
2Fh	Current ±20mA	±23.70mA /	¹⁾ ±0.05%	(1)
	Siemens S5 format	23.70mA = max. value before over range (19456)	of final value	
	(value and sign)	-2020mA = rated value (-1638416384)		
		-23.70mA = min. value before under range (-19456)	1)2)	
32h	Resistance measurement	-/	¹⁾²⁾ ±0.05%	(4)
	6000Ohm 4wire	6000Ω= final value (32767)	of final value	
33h	Resistance measurement		¹⁾²⁾ ±0.05%	(4)
0.51	6000Ohm 4wire	6000Ω = final value (6000)	of final value	
35h	Resistance measurement		¹⁾²⁾³⁾ ±0.2%	(3)
0.01	60Ohm 2wire	60Ω = final value (6000)	of final value	(0)
36h	Resistance measurement	- / 2000 - final value (2000)	¹⁾²⁾³⁾ ±0.1%	(3)
07L	6000hm 2wire	$600\Omega = \text{final value (6000)}$	of final value	(0)
37h	Resistance measurement	-/ 20000 - final value (20000)	¹⁾²⁾³⁾ ±0.1%	(3)
201	30000hm 2wire	$3000\Omega = \text{final value (30000)}$	of final value	(0)
38h	Resistance measurement	- / 60000	$^{(1)2)3)} \pm 0.1\%$	(3)
	60000hm 2wire	$6000\Omega = \text{final value (6000)}$	of final value	

No.	Function	Measurement range / representation	Tolerance	Conn.
⁶)3Ah	Current ±20mA Siemens S5 format	±23.70mA / 23.70mA = max. value before over range (19456)	¹⁾ ±0.05% of final value	(1)
	(two's complement)	-2020mA = nominal range (-1638416384) -23.70mA = min. value before under range (-19456)		
⁶)3Bh	Voltage ±10V Siemens S5 format (two's complement)	±11.85V / 12.5V = max. value before over range (20480) -1010V = nominal range (-1638416384) -12.5V = min. value before under range (-20480)	¹⁾ ±0.2% of final value	(1)
3Dh	Resistance measurement 60Ohm 4wire	-I 60 Ω = final value (6000)	¹⁾²⁾ ±0.1% of final value	(4)
3Eh	Resistance measurement 6000hm 4wire	- / 600Ω = final value (6000)	¹⁾²⁾ ±0.05% of final value	(4)
3Fh	Resistance measurement 30000hm 4wire	-1 3000 Ω = final value (30000)	¹⁾²⁾ ±0.05% of final value	(4)
57h	Voltage 050mV two's complement	050mV / 59.25mV = max. value before over range (5925) 050mV = rated range (05000)	¹⁾ ±0.1% of final value	(1)
58h	Voltage ±10V two's complement	±11.85V / 11.85V = max. value before over range (11850) -1010V = rated range (-1000010000) -11.85V = min. value before under range (-11850)	¹⁾ ±0.05% of final value	(1)
59h	Voltage ±4V two's complement	$\pm 4.74V$ / 4.74V = max. value before over range (4740) -44V = rated range (-40004000) -4.74V = min. value before under range (-4740)	¹⁾ ±0.05% of final value	(1)
5Ah	Voltage ±400mV two's complement	\pm 474mV / 474mV = max. value before over range (4740) -400400mV = rated range (-40004000) -474mV = min. value before under range (-4740)	¹⁾ ±0.1% of final value	(1)
5Ch	Current ±20mA two's complement	±23.70mA / 23.70mA = max. value before over range (23700) -2020mA = rated value (-2000020000) -23.70mA = min. value before under range (-23700)	¹⁾ ±0.05% of final value	(1)
5Dh	Current 420mA two's complement	1.185 +22.96mA / 22.96mA = max. value before over range (18960) 420mA = rated range (016000) 0mA = min. value before under range (-4000)	¹⁾ ±0.05% of final value	(1)
FFh	Channel not active (turned	off)		

¹⁾ measured at an environmental temperature of 25°C, velocity of 15 conversions/s

²⁾ excluding errors caused by transducer inaccuracies

³⁾ excluding errors caused by contact resistance and line resistance

⁴⁾ the compensation of the neutralization must be implemented externally

⁵⁾ the compensation for the neutralization is implemented internally by including the temperature of the front plug. The thermal conductors have to be connected directly to the front plug, and where necessary these must be extended by means of Thermocouple extension cables

⁶⁾ starting from hardware release 11

Note!

The module is preset to the range "±10V voltage" at S7 format.

Measurement data acquisition During a measurement the data is stored in the data input area. The table above shows the allocation of the data to a measured value as well as the respective tolerance.

The following figure shows the structure of the data input area:

Data input area:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Note!

Only channels 0 and 2 are used in 4wire systems.

Parameter data

Every channel is individual parameterizable. 10byte are available for the configuration data. Configuration parameters are stored in permanent memory and they will be retained even if power is turned off. The following table show the structure of the parameter area:

Parameter area:

Byte	Bit 7 Bit 0	Default
0	Diagnostic alarm byte:	00h
	Bit 5 0: reserved	
	Bit 6: 0: diagnostic alarm inhibited	
	1: diagnostic alarm enabled	
	Bit 7: reserved	
1	reserved	00h
2	Function-no. channel 0 (see table)	28h
3	Function-no. channel 1 (see table)	28h
4	Function-no. channel 2 (see table)	28h
5	Function-no. channel 3 (see table)	28h
6	Option byte channel 0	00h
7	Option byte channel 1	00h
8	Option byte channel 2	00h
9	Option byte channel 3	00h

Parameters

Diagnostic interrupt

The Diagnostic interrupt is enabled by means of bit 6 of byte 0. In this case an error a 4byte diagnostic message will be issued to the master system.

Function-no.

Here you have to enter the function number of your measurement function for every channel. The allocation of the function number to a measurement function is available from the table above.

Option byte

Here you may specify the conversion rate. In addition selection and envelope functions have been implemented.

Note!

Please note that the resolution is reduced when conversion rate is increased due to the shorter integration time.

The format of the data transfer remains the same. The only difference is that the lower set of bits (LSBs) loose significance for the analog value.

Structure of the option byte:

Byte	Bit 7 Bit 0	Resolution	Default
6 9	Option byte:		00h
	Bit 3 0: rate*		
	0000 15 conversions/s	16	
	0001 30 conversions/s	16	
	0010 60 conversions/s 0011 123 conversions/s	15 14	
	0100 168 conversions/s	12	
	0101 202 conversions/s	10	
	0110 3.7 conversions/s	16	
	0111 7.5 conversions/s	16	
	Bit 5 4: Selection function		
	00 deactivated		
	01 use 2 of 3 values		
	10 use 4 of 6 values Bit 7 6: Envelope function		
	00 deactivated		
	01 envelope ± 8		
	10 envelope ±16		

*) These specifications apply to 1channel operation. For multi-channel operations, the conversion rate per channel can be calculated by dividing the specified conversion rate by the number of active channels.

Diagnostic data As soon as you activated the alarm release in byte 0 of the parameter area, 4 diagnostic bytes with fixed content are transferred to the superordinated system in case of an error. Please note that analog modules only use the first two bytes for diagnostic purposes. The remaining two byte are not used. The structure of the diagnostic bytes is as follows:

Diagnostic data:

Byte	Bit 7 Bit 0	Default
0	Bit 0: Module malfunction	-
	Bit 1: constant 0	
	Bit 2: external error	
	Bit 3: channel error present	
	Bit 7 4: reserved	
1	Bit 3 0: class of module	-
	0101 analog module	
	Bit 4: channel information available	
	Bit 7 5: reserved	
2 3	not assigned	-

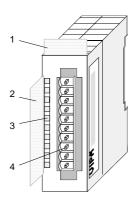
Technical data

Electrical data	VIPA 231-1BD52
Number of inputs	4 differential inputs
Input resistance	> 2M Ω (voltage range)
	< 50 Ω (current range)
measuring range	
- Thermocouple	Type J, K, N, R, S, T
- Resistance thermometer	Pt100, Pt1000, NI100, NI1000
- Resistance measuring	60Ω, 600Ω, 3kΩ
- Voltage measuring	050mV, 010V, ±4mV, ±4V, ±10V
- Current measuring	420mA, ±20mA
Power supply	5V via backplane bus
Current consumption	280mA via backplane bus
Isolation	500Vrms (field voltage - backplane bus)
Status indicators	via LEDs on the front
Programming specifications	
Input data	8byte (1 word per channel)
Output data	-
Parameter data	10byte
Diagnostic data	4byte
Process alarm data	-
Dimensions and weight	
Dimensions (WxHxD)	25.4x76x88mm
Weight	100g

231-1BD53 - AI 4x16Bit, multiinput

Order data AI 4x16Bit multiinput

VIPA 231-1BD53

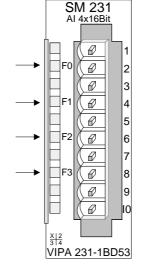

Description The module has 4 inputs that you may configure individually. The module requires a total of 8 input data bytes in the periphery area (2byte per channel). Isolation between the channels on the module and the backplane bus is

provided by means of DC/DC converters and optocouplers.

Properties

- the different channels are individually configurable and may be turned off
- the common signal inputs of the channels are not isolated from each other and the permitted potential difference is up to 5V
- diagnostic function

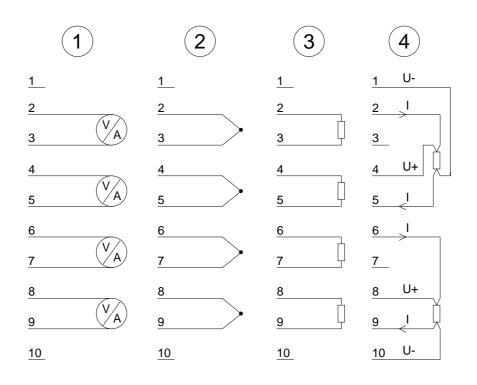
Construction


- [1] Label for module description
- [2] Label for the bit address with description
- [3] LEDs
- [4] Edge connector

Status indicators pin assignment

LED Description

F0 ... F3 LED (red):


turned on as soon as an channel error is detected res. an entry in the diagnostic bytes happened

Pin Assignment

- 1 For 4wire systems channel 0
- 2 + channel 0
- 3 Channel 0 common
- 4 + channel 1
- 5 Channel 1 common
- 6 + channel 2
- 7 Channel 2 common
- 8 + channel 3
- 9 Channel 3 common
- 10 For 4wire systems channel 2

Wiring diagrams The following illustration shows the connection options for the different measuring ranges. The assignment to the measuring ranges is to find in the column "Conn." of the table "Function-no. assignment" on the next pages.

Attention!

Temporarily not used inputs have to be connected with the concerning ground at activated channel. When deactivating unused channels by means of FFh, this is not required.

The following circumstances may cause damages at the analog module:

- The external supply of the input (current/voltage) <u>must not</u> be present as long as the backplane bus of the CPU is still without current supply!
- Parameterization and connection of the input must be congruent!
- You must not apply a voltage >15V to the input!

Function-no.The assignment of a function-no. to a certain channel happens during
parameterization. The function-no. 00h does not influence the function-no.
stored in the permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Measurement range / representation	Conn.
00h	Does not affect permanentl	y stored configuration data	
01h	Pt100 in 2wire mode	-200°C +850°C / in units of 1/10°C, two's complement	(3)
02h	Pt1000 in 2wire mode	-200°C +850°C / in units of 1/10°C, two's complement	(3)
03h	NI100 in 2wire mode	-60°C +250°C / in units of 1/10°C, two's complement	(3)
04h	NI1000 in 2wire mode	-60°C +250°C / in units of 1/10°C, two's complement	(3)
05h	Resistance measurement 600hm 2wire	- / 60Ω = final value (32767)	(3)
06h	Resistance measurement 6000hm 2wire	-I 600 Ω = final value (32767)	(3)
07h	Resistance measurement 3000Ohm 2wire	-1 3000 Ω = final value (32767)	(3)
08h	Resistance measurement 6000Ohm 2wire	-/ 6000 Ω = final value (32767)	(3)
09h	Pt100 via 4wire connection	-200°C +850°C / in units of 1/10°C, two's complement	(4)
0Ah	Pt1000 via 4wire connection	-200°C +850°C / in units of 1/10°C, two's complement	(4)
0Bh	NI100 via 4wire connection	-60°C +250°C / in units of 1/10°C, two's complement	(4)
0Ch	NI1000 via 4wire connection	-60°C +250°C / in units of 1/10°C, two's complement	(4)
0Dh	Resistance measurement 600hm 4wire	- / 60Ω = final value (32767)	(4)
0Eh	Resistance measurement 6000hm 4wire	- / 600Ω= final value (32767)	(4)
0Fh	Resistance measurement 3000Ohm 4wire	-1 3000 Ω = final value (32767)	(4)
10h	Thermocouple type J, ¹⁾ externally compensated	-210°C 1200°C / in units of 1/10°C, two's complement	(2)
11h	Thermocouple type K, ¹⁾ externally compensated	-270°C +1372°C / in units of 1/10°C, two's complement	(2)
12h	Thermocouple type N, ¹⁾ externally compensated	-270°C +1300°C / in units of 1/10°C, two's complement	(2)
13h	Thermocouple type R, ¹⁾ externally compensated	-50°C +1769°C / in units of 1/10°C, two's complement	(2)
14h	Thermocouple type T, ¹⁾ externally compensated	-270°C +400°C / in units of 1/10°C, two's complement	(2)
15h	Thermocouple type S, ¹⁾ externally compensated	-50°C +1769°C / in units of 1/10°C, two's complement	(2)
16h	Thermocouple type E, ¹⁾ externally compensated	-270°C +1000°C / in units of 1/10°C, two's complement	(2)
18h	Thermocouple type J, ² internally compensated	-210°C +1200°C / in units of 1/10°C, two's complement	(2)

No.	Function	Measurement range / representation	Conn.
19h	Thermocouple type K, ²⁾	-270°C +1372°C /	(2)
	internally compensated	in units of 1/10°C, two's complement	
1Ah	Thermocouple type N, 2)	-270°C +1300°C /	(2)
	internally compensated	in units of 1/10°C, two's complement	
1Bh	Thermocouple type R, ²⁾	-50°C +1769°C /	(2)
	internally compensated	in units of 1/10°C, two's complement	
1Ch	Thermocouple type T, ²⁾	-270°C +400°C /	(2)
	internally compensated	in units of 1/10°C, two's complement	
1Dh	Thermocouple type S, ²⁾	-50°C +1769°C /	(2)
	internally compensated	in units of 1/10°C, two's complement	()
1Eh	Thermocouple type E, ²⁾	-270°C +1000°C /	(2)
	internally compensated		(2)
071-	· · ·	in units of 1/10°C, two's complement	(4)
27h	Voltage ±50mV	±58.79mV /	(1)
	Siemens S7 format	58.79 mV = max. value before over range (32511)	
	(two's complement)	-5050mV= nominal range (-2764827648)	
		-58.79mV = min. value before under range (-32512)	
28h	Voltage ±10V	±11.76V /	(1)
	Siemens S7 format	11.76V= max. value before over range (32511)	
	(two's complement)	-1010V= nominal range (-2764827648)	
		-11.76V= min. value before under range (-32512)	
29h	Voltage ±4V	±4.70V /	(1)
	Siemens S7 format	4.70V = max. value before over range (32511)	
	(two's complement)	-44V = rated range (-2764827648)	
	(**************************************	-4.70V = min. value before under range (-32512)	
2Ah	Voltage ±400mV	±470mV/	(1)
_,	Siemens S7 format	470mV = max. value before over range (32511)	(.,
	(two's complement)	-400400mV = rated range (-2764827648)	
		-470mV = min. value before under range (-32512)	
2Bh	Voltage ±10V	±12.50V/	(1)
2011	Siemens S5 format	12.50V = max. value before over range (20480)	(1)
		-1010V = rated range (-1638416384)	
	(value and sign)	-12.50V = min. value before under range (-20480)	
			(4)
2Ch	Current ±20mA	±23.52mA /	(1)
	Siemens S7 format	23.52mA = max. value before over range (32511)	
	(two's complement)	-2020mA = rated value (-2764827648)	
		-23.52mA = min. value before under range (-32512)	(1)
2Dh	Current 420mA	1.185 +22.81mA /	(1)
	Siemens S7 format	22.81mA = max. value before over range (32511)	
	(two's complement)	420mA = rated range (027648)	
		1.185 mA = min. value before under range (-4864)	
2Eh	Current 420mA	0.8 +24.00mA /	(1)
	Siemens S5 format	24.00mA = max. value before over range (20480)	
	(value and sign)	4 20mA = rated range (016384)	
		0.8mA = min. value before under range (-3277)	
2Fh	Current ±20mA	±25.00mA /	(1)
	Siemens S5 format	25.00mA = max. value before over range (20480)	
	(value and sign)	-2020mA = rated value (-1638416384)	
	3 ,	-25.00mA = min. value before under range (-20480)	

No.	Function	Measurement range / representation	Conn.
32h	Resistance measurement	-/	(4)
	6000Ω 4wire	6000Ω= final value (32767)	
33h	Resistance measurement	- /	(4)
	6000Ω 4wire	6000Ω = final value (6000)	
35h	Resistance measurement	- /	(3)
	60Ω 2wire	60Ω = final value (6000)	
36h	Resistance measurement	-/	(3)
	600Ω 2wire	$600\Omega = \text{final value (6000)}$	
37h	Resistance measurement	-/	(3)
	3000Ω 2wire	$3000\Omega = \text{final value} (30000)$	
38h	Resistance measurement	-/	(3)
	6000Ω 2wire	$6000\Omega = \text{final value (}6000\text{)}$	
3Ah	Current ±20mA	±25.00mA /	(1)
	Siemens S5 format	25.00mA = max. value before over range (20480)	
	two's complement	-2020mA = nominal range (-1638416384)	
		-25.00mA = min. value before under range (-20480)	
3Bh	Voltage ±10V	±12.50V /	(1)
	Siemens S5 format	12.50V = max. value before over range (20480)	. ,
	two's complement	-1010V = nominal range (-1638416384)	
		-12.50V = min. value before under range (-20480)	
3Dh	Resistance measurement	-/	(4)
	60Ω 4wire	60Ω = final value (6000)	. ,
3Eh	Resistance measurement	-/	(4)
	600Ω 4wire	600Ω = final value (6000)	~ /
3Fh	Resistance measurement	-/	(4)
	3000Ω 4wire	$3000\Omega = \text{final value (30000)}$	(-)
57h	Voltage ±50mV	±58.79mV /	(1)
••••	two's complement	58.79 mV = max. value before over range (5879)	(.)
		-5050mV = rated range (-50005000)	
		-58.79V = min. value before under range (-5879)	
58h	Voltage ±10V	±11.76V /	(1)
	two's complement	11.76V = max. value before over range (11760)	
		-1010V = rated range (-1000010000)	
		-11.76V = min. value before under range (-11760)	
59h	Voltage ±4V	±4.70V/	(1)
	two's complement	4.70V = max. value before over range (4700)	
		-44V = rated range (-40004000)	
		-4.70V = min. value before under range (-4700)	
5Ah	Voltage ±400mV	±470mV /	(1)
	two's complement	470 mV = max. value before over range (4700)	
		-400400 mV = rated range (-40004000)	
		-470 mV = min. value before under range (-4700)	
5Ch	Current ±20mA	±23.51mA /	(1)
	two's complement	23.51mA = max. value before over range (23510)	
		-2020mA = rated value (-2000020000)	
		-23.51mA = min. value before under range (-23510)	
5Dh	Current 420mA	1.185 +22.81mA /	(1)
	two's complement	22.81mA = max. value before over range (18810)	. ,
		420mA = rated range (016000)	
		1.185mA = min. value before under range (-2815)	
62h	Cu50	-50°C +150°C /	(3)
	2wire	in units of 1/10°C, two's complement	~ /
2.4.1	Cu50	-50°C +150°C /	(4)
6Ah	Cubu		

No.	Function	Measurement range / representation	Conn.		
91h	PTC KTY81-110 ³⁾ 990-1010Ω Two-wire connection	$200^{\circ}C = max.$ value before over range (2000) -55 $150^{\circ}C = nominal range (-550 1500)$ -100°C = min. value before under range (-1000) Values in 0.1°C	(3)		
92h	PTC KTY81-120 ³⁾ 980-1020Ω Two-wire connection	$200^{\circ}C = max.$ value before over range (2000) -55 150°C = nominal range (-550 1500) -100°C = min. value before under range (-1000) Values in 0.1°C	(3)		
93h	PTC KTY81-121 $^{3)}$ 980-1000 Ω Two-wire connection	200°C = max. value before over range (2000) -55 150°C = nominal range (-550 1500) -100°C = min. value before under range (-1000) Values in $0.1°C$			
94h	PTC KTY81-122 ⁻³⁾ 1000-1020Ω Two-wire connection	200°C = max. value before over range (2000) -55 150°C = nominal range (-550 1500) -100°C = min. value before under range (-1000) Values in 0.1°C	(3)		
95h	PTC KTY81-150 ⁻³⁾ 950-1050Ω Two-wire connection	200°C = max. value before over range (2000) -55 150°C = nominal range (-550 1500) -100°C = min. value before under range (-1000) Values in 0.1°C	(3)		
96h	PTC KTY81-151 $^{3)}$ 950-1000 Ω Two-wire connection	200°C = max. value before over range (2000) -55 150°C = nominal range (-550 1500) -100°C = min. value before under range (-1000) Values in 0.1° C	(3)		
97h	PTC KTY81-152 ³⁾ 1000-1050Ω Two-wire connection	$200^{\circ}C = max.$ value before over range (2000) -55 150°C = nominal range (-550 1500) -100°C = min. value before under range (-1000) Values in 0.1°C	(3)		
FFh	Channel not active (turne	d off)			

¹⁾ The compensation of the neutralization must be implemented externally

- ²⁾ The compensation for the neutralization is implemented internally by including the temperature of the front plug. The thermal conductors have to be connected directly to the front plug, and where necessary these must be extended by means of thermo element extension cables
- $^{\rm 3)}$ $\,$ This function is available starting with firmware version 143 of the module.

Note!

The module is preset to the range "±10V voltage" at S7 format.

Measurement data acquisition

During a measurement the data is stored in the data input area. The following figure shows the structure of the data input area: Data input area:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Note!

Only channels 0 and 2 are used in 4wire systems.

Diagnosis at wire break with Thermocouples always active When using Thermocouples the diagnosis for wire break is always active. If a diagnosis alarm is parameterized, the module initializes a diagnosis at wire break for the corresponding channel.

Parameter data

Every channel is individual parameterizable. For the parameterization, 10byte parameterization data are available. The parameterization data are stored permanently and remain also in off mode. By using the SFC 55 "WR_PARM" you may alter the parameterization in the module during runtime. The time needed until the new parameterization is valid can last up to 60ms. During this time, the measuring value output is 7FFFh.

The following table shows the structure of the parameter data:

Parameter area:

Byte	Bit 7 Bit 0	Default
0	diagnostic:	00h
	Bit 5 0: reserved	
	Bit 6: diagnostic interrupt	
	0: deactivated	
	1: activated	
	Bit 7: reserved	
1	Bit 7 0: reserved	00h
2	Function-no. channel 0	28h
3	Function-no. channel 1	28h
4	Function-no. channel 2	28h
5	Function-no. channel 3	28h
6	Option-Byte channel 0	00h
7	Option-Byte channel 1	00h
8	Option-Byte channel 2	00h
9	Option-Byte channel 3	00h

Parameters

Diagnostic interrupt

With the help of bit 6 of byte 0, you may release the diagnostic interrupt. In case of an error, the *record set 0* with a size of 4byte is transferred to the superordinated system.

More detailed information is to find below under "Diagnostic data".

Function-no.

Here you set the function-no. of your measuring function for every channel. Please see the according table above.

Option-Byte

Here you may set the transducer velocity for every input channel. Please regard that a higher transducer velocity causes a lower resolution because of the lower integration time.

The data transfer format remains unchanged. Only the lower Bits (LSBs) are not longer relevant for the analog value.

Structure Option-Byte:

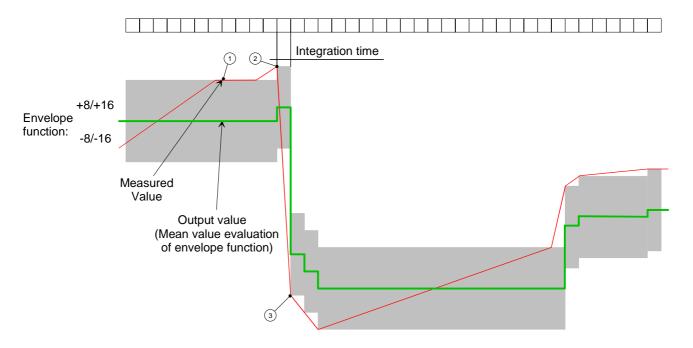
Byte	Bit 7 Bit 0	Resolution	Default
6 7	Bit 3 0: Velocity per channel* 0000 15 conversions/s 0001 30 conversions/s 0010 60 conversions/s 0011 120 conversions/s 0100 170 conversions/s	16 16 15 14 12	00h
	0101 200 conversions/s 0110 3.7 conversions/s 0111 7.5 conversions/s Bit 5 4: Mean value evaluation	10 16 16	
	00 deactivated 01 use 2 of 3 values 10 use 4 of 6 values 11 deactivated		
	Bit 7 6: Envelope function		
	00 deactivated 01 envelope ± 8 10 envelope ±16 11 deactivated		

*) These specifications apply to 1channel operation. For multi-channel operations, the conversion rate per channel can be calculated by dividing the specified conversion rate by the number of active channels.

Mean value evaluation

Mean value function 2 of 3 values:

After every measuring, the module evaluates the mean value of the last 3 binary values. The value most different from the mean value is deleted and another mean value evaluated from the remaining 2 values. This value is monitored.


Mean value function 4 of 6 values:

After every measuring, the module evaluates the mean value of the last 6 binary values. The 2 values most different from the mean value are deleted and another mean value evaluated from the remaining 4 values. This value is monitored.

Envelope function

The output valued is "wrapped" with an envelope. If the measured value over- res. underruns the envelope, the envelope migrates accordingly. The output value is the mean value of the envelope.

The following sample illustrates this:

- ① Measuring value within envelope → no envelope shift, Output is mean value of the current envelope upper and lower limit.
- ② Measuring value oversteps the envelope → Envelope shift up for the difference between "old" envelope upper limit and measuring range, output value is the mean value of the "new" envelope upper and lower limit.
- ③ Measuring value shortfalls the envelope → Envelope shift down for the difference between "old" envelope lower limit and measuring range, output value is the mean value of the "new" envelope upper and lower limit.

Diagnostic data The diagnostic data uses 12byte and are stored in the record sets 0 and 1 of the system data area.

When you enable the diagnostic interrupt in byte 0 of the parameter area, modules will transfer *record set 0* to the superordinated system when an error is detected.

Record set 0 has a predefined content and a length of 4byte. The content of the record set may be read in plain text via the diagnostic window of the CPU.

For extended diagnosis during runtime, you may evaluate the 12byte wide *record set 1* via the SFCs 51 and 59.

Evaluate At present diagnosis, the CPU interrupts the user application and branches into the OB 82. This OB gives you detailed diagnostic data via the SFCs 51 and 59 when programmed correctly.

After having processed the OB 82, the user application processing is continued. Until leaving the OB 82, the data remain consistent.

Byte	Bit 7 Bit 0	Default
0	Bit 0: Module malfunction	00h
	Bit 1: reserved	
	Bit 2: External error	
	Bit 3: Channel error present	
	Bit 6 4: reserved	
	Bit 7: Wrong parameters in the module	
1	Bit 3 0: Module class	15h
	0101 Analog module	
	Bit 4: Channel information present	
	Bit 7 5: reserved	
2	reserved	00h
3	reserved	00h

Record set 1 The *record set 1* contains the 4byte of record set 0 and additional 8byte channel specific diagnostic data.

The diagnostic bytes have the following assignment:

Record set 1 (Byte 0 to 11):

Byte	Bit 7 Bit 0	Default
0 3	Content record set 0 (see page before)	-
4	Bit 6 0: Channel type	74h
	70h: Digital input	
	71h: Analog input	
	72h: Digital output	
	73h: Analog output	
	74h: Analog in-/output	
	Bit 7: reserved	
5	Bit 7 0: Number of diagnostic bits of the module	08h
	per channel	0.41
6	Bit 7 0: Number of identical channels of a	04h
7	module Bit 0: Channel error Channel 0	0.01-
7		00h
	Bit 1: Channel error Channel 1	
	Bit 2: Channel error Channel 2 Bit 3: Channel error Channel 3	
	Bit 7 4: reserved	
8	Bit 0: Wire break Channel 0	00h
0	(only at Thermocouples)	0011
	Bit 1: Parameterization error Channel 0	
	Bit 2: Measuring range underflow Channel 0	
	Bit 3: Measuring range overflow Channel 0	
	Bit 7 4: reserved	
9	Bit 0: Wire break Channel 1	00h
-	(only at Thermocouples)	••••
	Bit 1: Parameterization error Channel 1	
	Bit 2: Measuring range underflow Channel 1	
	Bit 3: Measuring range overflow Channel 1	
	Bit 7 4: reserved	
10	Bit 0: Wire break Channel 2	00h
	(only at Thermocouples)	
	Bit 1: Parameterization error Channel 2	
	Bit 2: Measuring range underflow Channel 2	
	Bit 3: Measuring range overflow Channel 2	
	Bit 7 4: reserved	
11	Bit 0: Wire break Channel 3	00h
	(only at Thermocouples)	
	Bit 1: Parameterization error Channel 3	
	Bit 2: Measuring range underflow Channel 3	
	Bit 3: Measuring range overflow Channel 3	
	Bit 7 4: reserved	

Technical data

Electrical Data	VIPA 2	231-1BD	53					
Number of inputs	4	4						
- at 4wire resistance-type sensor								
Length of cable (shielded)	200m							
Voltages, Currents, Potentials								
Constant current for resistance-type	1.25m	A						
sensor								
Isolation								
 channel / backplane bus 	yes							
 between the channels 	no							
Permitted potential difference								
- between the inputs (U_{CM})	DC 5V	/						
- between inputs and MINTERNAL								
(U _{ISO})		V/AC 60	V					
Isolation proofed with	DC 50	V00						
Current consumption								
 via backplane bus 	280m/	4						
Power dissipation of the module	1.4W	1.4W						
Analog value generation	Calcul	ation tim	e/Resol	ution (pe	r channe	l)		
Measuring principle	Sigma	-Delta						
parameterizable	yes							
Conversion rate (Hz)	200	170	120	60	30	15	7.5	3.7
Integration time (ms)	5	6	8	17	33	67	133	270
Basic conversion time (ms)	7	8	10	19	35	69	135	272
- Additional conversion time for	135	135	135	135	135	135	135	135
open-circuit monitoring (ms)								
 Service time per cycle (only by 	10	10	10	10	10	10	10	10
thermocouple) (ms)								
Resolution (Bit) incl. overrange	10	12	14	15	16	16	16	16
Noise suppression for frequency f1 (Hz)	no						d 60Hz	
Basic execution time of the module, in	28	32	40	76	140	276	540	1088
ms (all channels enabled)								
Averaging		or 4 of 6	i					
Envelope function	±8 or ±16							
Suppression of interference,								
Limits of error								
Noise suppression for f=n x (f1 ±1%) (f1=	=interfer	rence fre	quency,	n=1,2,)			
Common-mode interference > 80dB								
$(U_{CM} < 5V)$								
Series-mode noise (peak value of noise	e > 80dB							
< nominal value of input range								
Crosstalk between the inputs	> 50d	3						

	ference to the input range)	<u> </u>		
	Measuring range	Tolerance		
At voltage input	±50mV	±0.6%		
	±400mV, ±4V, ±10V	±0.3%		
At current input	±20mA	±0.3%		
	020mA	±0.6%		
	420mA	±0.8%		
Resistance	060Ω	±0.8%		
	0600Ω, 03kΩ, 06kΩ	±0.4%		
Resistance thermometer	Pt100, Pt1000	±0.4%		
	Ni100, Ni1000	±1.0%		
	PTC KTY81-110, 990-1010Ω ¹⁾	±1.0%		
	ΡΤС ΚΤΥ81-120, 980-1020Ω	± Tolerance of the encoder		
	ΡΤC ΚΤΥ81-121, 980-1000Ω			
	ΡΤC ΚΤΥ81-122, 1000-1020Ω			
	ΡΤС ΚΤΥ81-150, 950-1050Ω			
	ΡΤC ΚΤΥ81-151, 950-1000Ω			
	PTC KTY81-152, 1000-1050Ω			
	Cu50	±1.4%		
Thermocouple	Type J, K, N, R, S, E, T	±1.5%		
Basic error limit (only valid to 120W/s)				
during temperature is 25°C, referring to	input range)			
	Measuring range	Tolerance		
/oltage input	±50mV	±0.4%		
olago inpat	±400mV, ±4V, ±10V	±0.2%		
Current input	±400mV; ±4V; ±10V ±20mA	±0.2%		
Junentinput	020mA	±0.2%		
	420mA	±0.4%		
Resistance	060Ω	±0.3%		
(esistance		±0.4%		
Resistance thermometer	0600Ω, 03kΩ, 06kΩ			
Resistance thermometer	Pt100, Pt1000	±0.2%		
	Ni100, Ni1000	±0.5%		
	ΡΤC ΚΤΥ81-110, 990-1010Ω	±0.5%		
	ΡΤC ΚΤΥ81-120, 980-1020Ω	± Tolerance of the encoder		
	ΡΤС ΚΤΥ81-121, 980-1000Ω			
	PTC KTY81-122, 1000-1020Ω			
	ΡΤϹ ΚΤΥ81-150, 950-1050Ω			
	ΡΤϹ ΚΤΥ81-151, 950-1000Ω			
	ΡΤϹ ΚΤΥ81-152, 1000-1050Ω			
	Cu50	±0.7%		
hermocouple	Type J, K, N, R, S, E, T	±1.0%		
Temperature error				
with reference to the input range)		±0.005%/K		
neasuring current		±0.015%/K		
inearity error				
with reference to the input range)		±0.02%		
Repeatability (in steady state at 25°C				
eferred to the input range)		±0.05%		
Temperature error of internal		±1.5%		
compensation	1			

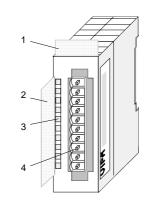
¹⁾ PTC measurement only available starting with firmware version 143 of the module.

States, Interrupts, Diagnosis	
_	
Diagnostic interrupt	parameterizable
Diagnosis functions	
- Sum error monitor	red SF LED (per channel)
 Diagnostic information read-out 	possible
Data for selecting a sensor	
Voltage	
±50mV, ±400mV, ±4V, ±10V	20ΜΩ
Current	
±20mA, 020mA, 420mA	85Ω
Resistors	
060Ω, 0600Ω, 03kΩ, 06kΩ	20ΜΩ
Resistance thermometer	
Pt100, Pt1000, Ni100, Ni1000, Cu50	20ΜΩ
Thermocouple	
Type J, K, N, R, S, E, T	20ΜΩ
Maximum input voltage for voltage input	25V
(destruction limit)	
Maximum input current for current input	30mA
(destruction limit)	
Connection of the sensor	
For measuring voltage	possible
For measuring current	
as 2wire transmitter	possible with external power supply
as 4wire transmitter	possible
For measuring resistance	
with 2 conductor connection	possible
with 4conductor connection	possible
Characteristic linearization	
parameterizable	yes
for RTD	Pt100, Pt1000, Ni100, Ni1000, Cu50
Thermocouple	Тур Ј, К, N, R, S, E, T
Temperature compensation	
parameterizable	yes
internal temperature compensation	possible
external temperature compensation	possible
with comparison point (0°C)	°C
Unit for temperature measurement	°
Parameter data	
Input data	8byte (1 Word per channel)
Parameter data	10byte
Diagnostic data	12byte
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88mm
Weight	80g
	1009

231-1BD60 - AI 4x12Bit, 4 ... 20mA, isolated

Order data AI 4x12Bit, 4...20mA, isolated

VIPA 231-1BD60


Description The module has 4 inputs that are permanently configured to measure current signals (4 ... 20mA). This module requires a total of 8byte of the process image for the input data (2byte per channel).

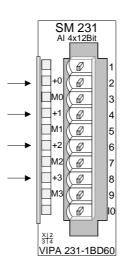
The measured values are returned in S5 format from Siemens. DC/DC converters and isolation amplifiers are employed to provide electrical isolation for the channels of the module with respect to the backplane bus and between the different channels.

Properties

- 4 inputs, channels isolated from the backplane bus and from each other (galvanic isolation of the channels by means of isolation amplifiers)
- Permanently configured for current measurements
- No parameterization required
- Suitable for transducers with 4 ... 20mA outputs
- LEDs to indicate wire break

Construction

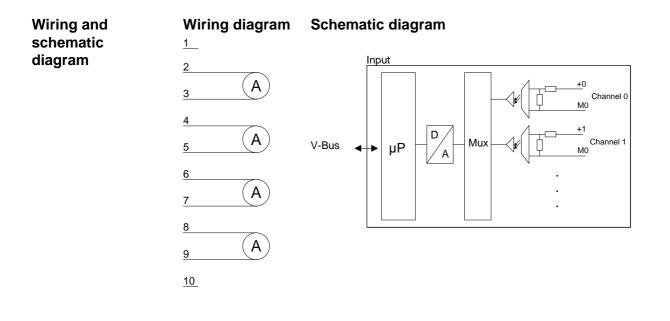
- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


4

Status indicator pin assignment

LED Description

+0 ... +3 LED (red)


wire break detection These LEDs is turned on when the transducer is disconnected.

Pin Assignment

2	pos. connection Ch. 0

- 3 Channel 0 common
- 4 pos. connection Ch.1
- 5 Channel 1 common
- 6 pos. connection Ch.2
- 7 Channel 2 common
- 8 pos. connection Ch.3
- 9 Channel 3 common
- 10

Wire break
recognitionThe wire break recognition is always active. In case of a wire break res.
when no encoder is connected, the LED of the according channel is turned
on. The module has no diagnostic ability.

Numeric notation Input data in Siemens S5 format is stored in a word. The word contains the binary value and information bits:

Numeric notation:

Byte	Bit 7 Bit 0
0	Bit 0: overflow bit
	0: value within measuring range
	1: measuring range exceeded
	Bit 1: error bit (set at internal error)
	Bit 2: activity bit (always 0)
	Bit 7 3: binary measured value (see table below)
1	Bit 6 0: binary measured value (see table below)
	Bit 7: sign
	0 positive
	1 negative

The following table shows the allocation of binary values to the respective measured values.

Numeric notation in Siemens S5 format	Measured value in mA	Units	Binary measured value	Т	E	Ü	Range
	24.0	2560	0101000000000	0	0	0	overdrive region
	20.016	2049	0100000000001	0	0	0	
	20.0	2048	0100000000000	0	0	0	nominal range
	19.98	2047	0011111111111	0	0	0	
	12.0	1024	0010000000000	0	0	0	
	8.0	512	0001000000000	0	0	0	
	6.0	256	0000100000000	0	0	0	
	5.0	128	0000010000000	0	0	0	
	4.016	2	0000000000010	0	0	0	
	4.008	1	0000000000000	0	0	0	
	4	0	0000000000000000000	0	0	0	
	3.984	-2	1111111111110	0	0	0	Underdrive region
	3.0	-128	111110000000	0	0	0	
	2.0	-256	1111100000000	0	0	0	
	1.0	-384	1111010000000	0	0	0	
	0.0	-512	1111000000000	0	0	0	

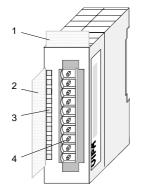
Technical data

Electrical data	VIPA 231-1BD60
Number of inputs	4 individually isolated
Current measuring range	4 20mA
Input filter time delay	3ms
Input resistance	20Ω
Power supply	5V via backplane bus
Current consumption	280mA via backplane bus
Isolation	yes, every channel separately, isolation tested at 500Vrms
Status indicators	via LEDs on the front
Programming specifications	
Input data	8byte (1 word per channel)
Output data	-
Parameter data	-
Diagnostic data	-
Process alarm data	-
Dimensions and weight	
Dimensions (WxHxD)	25.4x76x88mm
Weight	120g

231-1BD70 - AI 4x12Bit, ±10V, isolated

Order data AI 4x12Bit, ±10V, isolated VIPA 231-1BD70

Description The module has 4 inputs that are permanently configured to measure voltage signals (±10V). This module requires a total of 8byte of the process image for the input data (2byte per channel).


The measured values are returned in S5 format from Siemens. DC/DC converters and isolation amplifiers are employed to provide electrical isolation for the channels of the module with respect to the backplane bus and between the different channels.

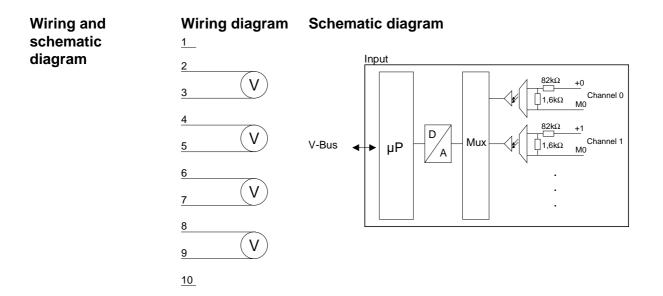
 4 inputs, channels isolated from the backplane bus and from each other (Galvanic isolation of the channels by means of isolation amplifiers)

- Permanently configured for voltage measurements
- No parameterization required
- Suitable for transducers with ±10V outputs

Construction

Properties

- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


Pin assignment

Pin Assignment

- 1
- 2 pos. connection Channel 0
- 3 Channel 0 common
- 4 pos. connection Channel 1
- 5 Channel 1 common
- 6 pos. connection Channel 2
- 7 Channel 2 common
- 8 pos. connection Channel 3
- 9 Channel 3 common

10

Numeric notation Input data in Siemens S5 format is stored in a word. The word contains the binary value and information bits:

Numeric notation:

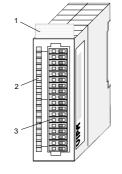
Byte	Bit 7 Bit 0
0	Bit 0: overflow bit
	0: value within measuring range
	1: measuring range exceeded
	Bit 1: error bit (set at internal error)
	Bit 2: activity bit (always 0)
	Bit 7 3: binary measured value (see table below)
1	Bit 6 0: binary measured value (see table below)
	Bit 7: sign
	0 positive
	1 negative

The following table shows the allocation of binary values to the respective measured values.

Numeric notation in Siemens	Measured value in V	Units	Binary measured value	Т	E	Ü	Range
S5 format	12.5	2560	0101000000000	0	0	0	overdrive region
	10.005	2049	0100000000001	0	0	0	
	10.0	2048	0100000000000	0	0	0	nominal range
	5	1024	0010000000000	0	0	0	
	2.5	512	0001000000000	0	0	0	
	1.25	256	0000100000000	0	0	0	
	0.625	128	0000010000000	0	0	0	
	0.005	1	00000000000001	0	0	0	
	0	0	000000000000000	0	0	0	
	-0.005	-1	11111111111111	0	0	0	
	-0.625	-128	111110000000	0	0	0	
	-1.25	-256	1111100000000	0	0	0	
	-2.5	-512	1111000000000	0	0	0	
	-5	-1024	1110000000000	0	0	0	
	-10.0	-2048	11000000000000	0	0	0	
	-10.005	-2049	10111111111111	0	0	0	Underdrive region
	-12	-2560	1011000000000	0	0	0	

Technical data

Electrical data	VIPA 231-1BD70
Number of inputs	4 individually isolated
Voltage measuring range	±10V
Input filter time delay	3ms
Input resistance	83.5kΩ
Power supply	5V via backplane bus
Current consumption	280mA via backplane bus
Isolation	yes, every channel separately, isolation tested at 500Vrms
Programming specifications	
Input data	8byte (1 word per channel)
Output data	-
Parameter data	-
Diagnostic data	-
Process alarm data	-
Dimensions and weight	
Dimensions (WxHxD)	25.4x76x88mm
Weight	120g

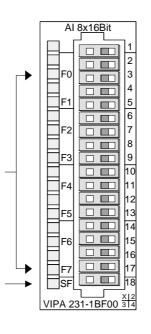

231-1BF00 - AI 8x16Bit

Order data AI 8x16Bit VIPA 231-1BF00

DescriptionThe analog input module transfers analog signals from the process into
digital signals for the internal processing.
As transducer you may connect thermo couplers type J, K, T and
resistance thermometer Pt100.
The modules has 8 inputs that you may configure in groups of two
channels individually.

- Properties
- 8 analog inputs
- wire break detection
- resolution 15Bit + sign

Construction


- [1] Label for the name of the module
- [2] LED status indicator
- [3] Edge connector

Status indicator pin assignment

LED Description

F0...F7 LED (red): error for each channel

SF LED (red): sum error

Pin Assignment

1	not connected
2	pos. connection Ch.0
3	Channel 0 common
4	pos. connection Ch.1
5	Channel 1 common
6	pos. connection Ch.2
7	Channel 2 common
8	pos. connection Ch.3
9	Channel 3 common
10	pos. connection Ch.4
11	Channel 4 common

- 12 pos. connection Ch.5
- 13 Channel 5 common
- 14 pos. connection Ch.6
- 15 Channel 6 common
- pos. connection Ch.7 16
- 17 Channel 7 common
- 18 not connected

Note!

Unused inputs on activated channels have to be connected to the respective ground.

This is not necessary when the unused channels are turned off by means of FFh.

Connection diagram		2	3	4
	1	<u>1</u>	<u>1</u>	<u>1</u>
	2	2	<u>2</u>	2
	<u>3</u> (mV)	3	3	3
	4	4	4	4
	<u>5</u> (mV)	5	5	5
	6	6	6	
	<u>7</u> (mV)	7	7	7
	8	8	8	8
	<u>9</u> (mV)	9	9	9
	10	10	10	
	<u>11</u> (mV)	11	<u>11</u>	11
	12	12	12	12
	13 mV	13	13	13
	14		<u>14</u>	14
	<u>15</u> (mV)	15	15	15
	16	16	16	16
	17 mV	17	17	17
	18	18	18	<u>18</u>

Function-no. assignment The assignment of a function-no. to a certain channel happens during parameterization. The function-no. 00h does not influence the function-no. stored in the permanent parameterization data. Assigning FFh deactivates the according channel.

No.	Function	Measurement range / representation	Tolerance ref. to nominal range	Conn.
00h	Does not affect permaner	itly stored configuration data		
01h	RTD Pt100 in 2wire mode	-200 +850°C / in units of 1/10°C, two's complement	¹⁾²⁾³⁾ ±0.15%	(3)
61h	RTD Pt100 in 2wire mode	-328 1562°F in units of 1/10°F, two's complement	¹⁾²⁾³⁾ ±0.15%	(3)
09h	RTD Pt100 via 4wire connection	-200 +850°C / in units of 1/10°C, two's complement	¹⁾²⁾ ±0.15%	(4)
69h	RTD Pt100 via 4wire connection	-328 1562°F in units of 1/10°F, two's complement	¹⁾²⁾ ±0.15%	(4)
10h	Thermocouple type J, externally compensated	0 °C 1000°C / in units of 1/10°C, two's complement	¹⁾²⁾⁴⁾ ±0.1%	(2)
40h	Thermocouple type J, externally compensated	32 1832°F in units of 1/10°F, two's complement	¹⁾²⁾⁴⁾ ±0.1%	(2)
11h	Thermocouple type K, externally compensated	0 °C 1300°C / in units of 1/10°C, two's complement	¹⁾²⁾⁴⁾ ±0.1%	(2)
41h	Thermocouple type K, externally compensated	32 2372°F in units of 1/10°F, two's complement	¹⁾²⁾⁴⁾ ±0.1%	(2)
14h	Thermocouple type T, externally compensated	-200 °C +400°C / in units of 1/10°C, two's complement	¹⁾²⁾⁴⁾ -20060.1 ±0.5% -60400 ±0.2%	(2)
44h	Thermocouple type T, externally compensated	-328 752°F in units of 1/10°F, two's complement	¹⁾²⁾⁴⁾ -32876,1 ±0.5% -76752 ±0.2%	(2)
18h	Thermocouple type J, internally compensated	0 °C 1000°C / in units of 1/10°C, two's complement	¹⁾²⁾⁵⁾ ±1.0%	(2)
48h	Thermocouple type J, internally compensated	32 1832°F in units of 1/10°F, two's complement	¹⁾²⁾⁵⁾ ±1.0%	(2)
19h	Thermocouple type K, internally compensated	0 °C 1300°C / in units of 1/10°C, two's complement	¹⁾²⁾⁵⁾ ±1.0%	(2)
49h	Thermocouple type K, internally compensated	32 2372°F in units of 1/10°F, two's complement	¹⁾²⁾⁵⁾ ±1.0%	(2)
1Ch	Thermocouple type T, internally compensated	-200 °C +400°C / in units of 1/10°C, two's complement	¹⁾²⁾⁵⁾ ±2.0%	(2)
4Ch	Thermocouple type T, internally compensated	-328 752°F in units of 1/10°F, two's complement	¹⁾²⁾⁵⁾ ±2.0%	(2)
26h	Voltage 060mV	060mV = nominal range (0-27648)	¹⁾ ±0.1%	(1)
56h	Voltage 060mV	060mV = nominal range (0-6000) in units of 1/100mV	¹⁾ ±0.1%	(1)
FFh	Channel not active (off)			

¹⁾ measured at an ambient temperature of 25°C, velocity of 15 conversions/s

²⁾ excluding errors caused by transducer inaccuracies

³⁾ excluding errors caused by contact resistance and line resistance

⁴⁾ the compensation of the neutralization has to be implemented externally

⁵⁾ the compensation for the neutralization is implemented internally by including the temperature of the front plug. The thermal conductors have to be connected directly to the front plug, and where necessary these have to be extended by means of Thermocouple extension cables.

Measurement data acquisition During a measurement, the data is stored in the data input area. The table above shows the allocation of the data to a measured value as well as the respective tolerance.

The following figures show the structure of the data input area:

Dutu inpu	
Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3
8	High-Byte channel 4
9	Low-Byte channel 4
10	High-Byte channel 5
11	Low-Byte channel 5
12	High-Byte channel 6
13	Low-Byte channel 6
14	High-Byte channel 7
15	Low-Byte channel 7

Data input area:

Note!

Only channels 0, 2, 4 and 6 are used in 4wire systems.

Parameter dataYou may configure the channels in groups of two individually. 10byte are
available for the configuration data. Configuration parameters are stored in
permanent memory and they will be retained even if power is turned off.
The following table shows the structure of the parameter area:

Parameter area:

Byte	Bit 7 Bit 0	Default
0	Diagnostic interrupt byte:	0Fh
	Bit 0: 0: wire break recognition channel 0/1 off	
	1: wire break recognition channel 0/1 on	
	Bit 1: 0: wire break recognition channel 2/3 off	
	1: wire break recognition channel 2/3 on	
	Bit 2: 0: wire break recognition channel 4/5 off	
	1: wire break recognition channel 4/5 on	
	Bit 3: 0: wire break recognition channel 6/7 off	
	1: wire break recognition channel 6/7 on	
	Bit 4, 5: reserved	
	Bit 6: 0: diagnostic interrupt inhibited	
	1: diagnostic interrupt enabled	
	Bit 7: reserved	
1	reserved	00h
2	Function-no. channel 0/1 (see table)	26h
3	Function-no. channel 2/3 (see table)	26h
4	Function-no. channel 4/5 (see table)	26h
5	Function-no. channel 6/7 (see table)	26h
6	Option Byte channel 0/1	00h
7	Option Byte channel 2/3	00h
8	Option Byte channel 4/5	00h
9	Option Byte channel 6/7	00h

Parameters

Diagnostic interrupt

The diagnostic interrupt is enabled by means of bit 6 of byte 0. In this case an error a 4byte diagnostic message will be issued to the master system.

Function-no.

Here you have to enter the function number of your measurement function for 2 channels. The allocation of the function number to a measurement function is available from the table above.

Option-Byte

Here you may specify for 2 channels the conversion rate.

Note!

Please note that the resolution is reduced when conversion rate is increased due to the shorter integration time.

The format of the data transfer remains the same. The only difference is that the lower set of bits (LSBs) loose significance for the analog value.

Structure of the option byte:

Byte	Bit 7 Bit 0	Resolution	Default
6 9	Option byte:		00h
	Bit 3 0: rate *		
	0000 15 conversions/s	16	
	0001 30.1 conversions/s	16	
	0010 60 conversions/s	15	
	0011 123.2 conversions/s	14	
	0100 168.9 conversions/s	12	
	0101 202.3 conversions/s	10	
	0110 3.76 conversions/s	16	
	0111 7.51 conversions/s	16	
	Bit 7 4: reserved		

*) These specifications apply to 1channel operation. For multi-channel operations the conversion rate per channel can be calculated by dividing the specified conversion rate by the number of active channels.

Diagnostic data The diagnostic data have a size of 12byte and are stored in the record sets 0 and 1 of the system data area.

As soon as you activated the alarm release in byte 0 of the parameter area, in case of an error *record set 0* is transferred to the superordinated system. *Record set 0* has a fixed content and a length of 4byte. The contents of *record set 0* may be monitored in plain text via the diagnosis window of the CPU.

For extended diagnostic purposes during runtime, you may evaluate the *record set 1* with a size of 12byte via the SFCs 51 and 59.

Evaluate
diagnosisAt a diagnostic task the CPU interrupts the user application and branches
into OB 82. With according programming, you may request in this OB with
the SFCs 51 and 59 detailed diagnostic information and react on it.
After execution of the OB 82, the processing of the user application is
continued. The diagnostic data remains consistent until leaving the OB 82.

Record set 0 Byte 0 to 3:

Record set 0 (Byte 0 to 3):

Byte	Bit 7 Bit 0	Default
0	Bit 0: error in module	00h
	Bit 1: reserved	
	Bit 2: external error	
	Bit 3: channel error	
	Bit 6 4: reserved	
	Bit 7: wrong parameter in module	
1	Bit 3 0: module class	15h
	0101 analog module	
	Bit 4: channel information present	
	Bit 7 6: reserved	
2	not used	00h
3	Bit 5 0: reserved	00h
	Bit 6: missing (lost) process alarm (see process alarm)	
	Bit 7: reserved	

 Record set 1
 Byte 0 to 11:

 Record set 1 contains the 4byte of record set 0 and 8byte module specific diagnostic data.

The diagnostic bytes have the following assignment:

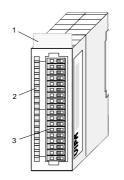
	Bit 7 Bit 0	Default
0 3	content of record set 0 (see page above)	-
4	Bit 6 0: channel type	71h
	70h: digital input	
	71h: analog input	
	72h: digital output	
	73h: analog output	
	Bit 7: reserved	
5	Bit 7 0: number of diagnostic output bits per channel	04h
6	Bit 7 0: number of similar channels of a module	08h
7	Bit 0: Channel error channel 0	00h
	Bit 1: Channel error channel 1	
	Bit 2: Channel error channel 2	
	Bit 3: Channel error channel 3	
	Bit 4: Channel error channel 4	
	Bit 5: Channel error channel 5	
	Bit 6: Channel error channel 6	
	Bit 7: Channel error channel 7	
8	Bit 0: Wire break channel 0	00h
	Bit 1: Parameterization error channel 0	
	Bit 2: Measuring range underflow channel 0	
	Bit 3: Measuring range overflow channel 0	
	Bit 4: Wire break channel 1	
	Bit 5: Parameterization error channel 1	
	Bit 6: Measuring range underflow channel 1	
	Bit 7: Measuring range overflow channel 1	
9	Bit 0: Wire break channel 2	00h
	Bit 1: Parameterization error channel 2	
	Bit 2: Measuring range underflow channel 2	
	Bit 3: Measuring range overflow channel 2	
	Bit 4: Wire break channel 3	
	Bit 5: Parameterization error channel 3	
	Bit 6: Measuring range underflow channel 3	
	Bit 7: Measuring range overflow channel 3	

continued ...

continue	
----------	--

.

Byte	Bit 7 Bit 0	Default
10	Bit 0: Wire break channel 4	00h
	Bit 1: Parameterization error channel 4	
	Bit 2: Measuring range underflow channel 4	
	Bit 3: Measuring range overflow channel 4	
	Bit 4: Wire break channel 5	
	Bit 5: Parameterization error channel 5	
	Bit 6: Measuring range underflow channel 5	
	Bit 7: Measuring range overflow channel 5	
11	Bit 0: Wire break channel 6	00h
	Bit 1: Parameterization error channel 6	
	Bit 2: Measuring range underflow channel 6	
	Bit 3: Measuring range overflow channel 6	
	Bit 4: Wire break channel 7	
	Bit 5: Parameterization error channel 7	
	Bit 6: Measuring range underflow channel 7	
	Bit 7: Measuring range overflow channel 7	


Technical data

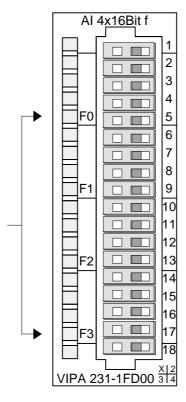
Electrical data	VIPA 231-1BF00
Number of inputs	8
Input resistance	> 2MΩ
measuring range	
- Thermocouple	Туре Ј, К, Т
- Resistance thermometer	Pt100
- Voltage measuring	060mV
Power supply	5V via backplane bus
Current consumption	280mA via backplane bus
Isolation	500Vrms (field voltage - backplane bus)
Dissipation power	typ. 1.3W
Status indicators	via LEDs on the front
Programming specifications	
Input data	16byte (1 word per channel)
Output data	-
Parameter data	10byte
Diagnostic data	12byte
Process alarm data	-
Dimensions and weight	
Dimensions (WxHxD)	25.4x76x88mm
Weight	120g

231-1FD00 - AI 4x16Bit f

Order data	AI 4x16Bit f	VIPA 231-1FD00
Description	The module requires a tota (2byte per channel). Isolation between the chan	ast) inputs that you may configure individually. al of 8 input data bytes in the process image anels on the module and the backplane bus is C converters and optocouplers.
Properties	 LED for signaling wire brown Diagnostic function Resolution 16Bit Easy to connect 2-wire supply 	he cycle time is ca. 0.8ms dividually configurable and may be turned off eak in current loop operation current sensors via splitting the front power ed via internal reference power supply

Construction

- [1] Label for the name of the module
- [2] LED status indicator
- [3] Edge connector


Status indicator pin assignment

LED Description

- F0 LED (red):
- ... is on if the
- F3 measured current value exceeds the range 4...20mA

overload).

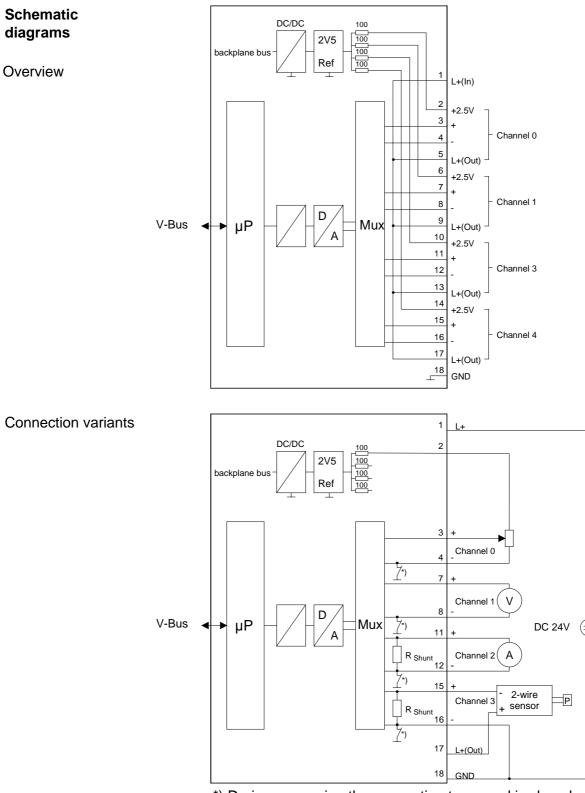
(cable break or

Pin Assignment

1	L+ (In)
2	+2.5V
3	pos. connection channel 0
4	neg. connection channel 0
5	L+ (Out)
6	+2.5V
7	pos. connection channel 1
8	neg. connection channel 1
9	L+ (Out)
10	+2.5V
11	pos. connection channel 2
12	neg. connection channel 2
13	L+ (Out)
14	+2.5V
15	pos. connection channel 3
16	neg. connection channel 3
17	L+ (Out)

18 GND

Note!


Unused inputs on activated channels have to be connected to the respective ground. This is not necessary when the unused channels are turned off by means of FFh.

The following circumstances may cause damages at the analog module:

- The module must <u>always first</u> be power supplied via backplane bus before connecting the external power supply (current/voltage) to the front connector.
- Parameterization and connection of the input must always be congruent!
- You must not apply a voltage >15V to the input!

Wiring diagram

1	2	3
1 L+ (In)	<u>1</u> L+ (In)	<u>1</u> L+ (In)
2	<u>2 +2.5V</u>	2 + 2-wire
3 +	3	<u>3</u> _ sensor
Channel 0 (VA)	4	4
5 L+ (Out)	5 L+ (Out)	5 L+ (Out)
6	6 +2.5V	6
7_+	7	7 + 2-wire 7 sensor
Channel 1 (VA)	8	8
9 L+ (Out)	9 L+ (Out)	9 L+ (Out)
<u>10</u>	<u>10</u> +2.5V	
<u>11 +</u>	<u>11</u>	11 + 2-wire _ sensor
12 Channel 2 VA	12	12
<u>13</u> L+ (Out)	<u>13</u> L+ (Out)	13 L+ (Out)
<u>14</u>	<u>14 +2.5V</u>	
<u>15 +</u>	15	15 + 2-wire sensor
16 Channel 3 (VA)	16	16
<u>17</u> L+ (Out)	<u>17</u> L+ (Out)	17 L+ (Out)
18 GND	<u>18</u> GND	18 GND

*) During measuring the connection to ground is closed.

Attention!

If you connect one or more external differential sources (e.g. current shunts), a further connection to GND (Pin 18) is not allowed! This may damage the module!

Function-no.The assignment of a function-no. to a certain channel happens during
parameterization. The function-no. 00h does not influence the function-no.
stored in the permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Measurement range / representation	Connection
00h	Does not affect perman	ently stored configuration data	
28h	Default value Voltage ±10V Siemens S7 format	$\pm 10V$ 9.9 10V (27371 27648) ¹⁾ -9.99.9V= rated range (-27370 27370) 10V 0.0V/(27648 27371) ¹⁾	(1), (2)
29h	(two's complement) Voltage ±4V Siemens S7 format (two's complement)	-10V9.9V (-2764827371) ¹⁾ ±4.70V / 4.70V = max. value before over range (32511) -44V = rated range (-2764827648) -4.70V = min. value before under range (-32512)	(1), (2)
2Ah	Voltage ±400mV Siemens S7 format (two's complement)	±470mV / 470mV = max. value before over range (32511) -400400mV = rated range(-2764827648) -470mV = min. value before under range (-32512)	(1)
2Ch	Current ±20mA Siemens S7 format (two's complement)	±23.51mA / 23.51mA = max. value before over range (32511) -2020mA = rated range (-2764827648) -23.51mA = min. value before under range (-32512)	(1), (3)
2Dh	Current 420mA Siemens S7 format (two's complement)	1.185 +22.81mA / 22.81mA = max. value before over range (32511) 420mA = rated range (027648) 1.18mA = min. value before under range (-4864)	(1), (3)
58h	Voltage ±10V (two's complement)	±10V 9.9 10V (9901 10000) ¹⁾ -9.9 9.9V rated range (-9900 9900) -109.9V (-100009901) ¹⁾	(1), (2)
59h	Voltage ±4V (two's complement)	$\pm 4.95V$ / 4,95V = max. value before over range (4950) -44V = rated range (-40004000) -4.95V = min. value before under range (-4950)	(1), (2)
5Ah	Voltage ±400mV (two's complement)	\pm 495mV / 495mV = max. value before over range (4950) -400400mV = rated range (-40004000) -495mV = min. value before under range (-4950)	(1)
5Ch	Current ±20mA (two's complement)	±25mA / 25mA = max. value before over range (25000) -2020mA = rated range (-2000020000) -25mA = min. value before under range(-25000)	(1), (3)
5Dh	Current 420mA (two's complement)	0.8 +24.00mA / 24.00mA = End over range (20000) 420mA = rated range (016000) 0.8mA = min. value before under range (-3200)	(1), (3)
FFh	Channel not active (turn	ed off)	

1) depends on calibration factor and is not guaranteed.

Note!

The module is preset to the range " $\pm 10V$ voltage" in S7 format from Siemens.

Numeric notation in S7 from Siemens

Analog values are represented as a two's complement value.

Numeric notation:

Byte	Bit 7 Bit 0	
0	Bit 7 0: binary measured value	
1	Bit 6 0: binary measured value	
	Bit 7: sign	
	0 positive	
	1 negative	

+/- 10V

+/- 100			
Voltage	Decimal	Hex	
-10V	-27648	9400	
-5V	-13824	CA00	
0V	0	0	
5V	13824	3600	
10V	27648	6C00	

+/-4V

Voltage	Decimal	Hex			
-4V	-27648	9400			
0V	0	0			
4V	27648	6C00			

+/-400mV

Voltage	Decimal	Hex	
-400mV	-27648	9400	
0V	0	0	
400mV	27648	6C00	
100111	21010		

4....20mA

Current	Decimal	Hex	
4mA	0	0	
12mA	13824	3600	
20mA	27648	6C00	

+/- 20mA

Current	Decimal	Hex
-20mA	-27648	9400
-10mA	-13824	CA00
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{4}$, $U = Value \cdot \frac{4}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U}{400}$, $U = Value \cdot \frac{400}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}$, $I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}$, $I = Value \cdot \frac{20}{27648} + 4$ I: current, Value: decimal value **Measurement data** acquisition During a measurement the data is stored in the data input area. The table above shows the allocation of the data to a measured value as well as the respective tolerance.

The following figures show the structure of the data input area:

Data input area:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Parameter dataYou may configure every channel individually. 32byte are available for the
configuration data. Configuration parameters are stored in permanent
memory and they will be retained even if power is turned off.
The following table shows the structure of the parameter area:

Parameter area:

Byte	Bit 7 Bit 0	Default
0	Diagnostic alarm byte:	00h
	Bit 5 0: reserved	
	Bit 6: 0: diagnostic interrupt inhibited	
	1: diagnostic interrupt enabled	
	Bit 7: reserved	
1	Limit value monitoring:	00h
	Bit 0: limit value monitoring channel 0	
	Bit 1: limit value monitoring channel 1	
	Bit 2: limit value monitoring channel 2	
	Bit 3: limit value monitoring channel 3	
	Bit 7 4: reserved	
2	Function-no. channel 0 (see table)	28h
3	Function-no. channel 1 (see table)	28h
4	Function-no. channel 2 (see table)	28h
5	Function-no. channel 3 (see table)	28h
6-9	reserved	00h

continued ...

continue

Byte	Bit 7 Bit 0	Default
10	Bit 2 0: mean value	00h
	000: disabled	
	001: mean value over 2 values	
	010: mean value over 4 values	
	011: mean value over 8 values	
	100: mean value over 16 values	
	101, 011, 111: disabled	
	Bit 7 3: reserved	
11-15	reserved	00h
16	channel 0, upper limit, High-Byte	7Fh
17	channel 0, upper limit, Low-Byte	FFh
18	channel 0, lower limit, High-Byte	80h
19	channel 0, lower limit, Low-Byte	00h
20	channel 1, upper limit, High-Byte	7Fh
21	channel 1, upper limit, Low-Byte	FFh
22	channel 1, lower limit, High-Byte	80h
23	channel 1, lower limit, Low-Byte	00h
24	channel 2, upper limit, High-Byte	7Fh
25	channel 2, upper limit, Low-Byte	FFh
26	channel 2, lower limit, High-Byte	80h
27	channel 2, lower limit, Low-Byte	00h
28	channel 3, upper limit, High-Byte	7Fh
29	channel 3, upper limit, Low-Byte	FFh
30	channel 3, lower limit, High-Byte	80h
31	channel 3, lower limit, Low-Byte	00h

Diagnostic data	The diagnostic data have a size of 12byte and are stored in the record sets 0 and 1 of the system data area.
	As soon as you activated the alarm release in byte 0 of the parameter area,

in case of an error *record set 0* is transferred to the superordinated system. *Record set 0* has a fixed content and a length of 4byte. The contents of *record set 0* may be monitored in plain text via the diagnosis window of the CPU.

For extended diagnostic purposes during runtime, you may evaluate the *record set 1* with a size of 12byte via the SFCs 51 and 59.

EvaluateAt a diagnostic task the CPU interrupts the user application and branchesdiagnosisinto OB 82. With according programming, you may request in this OB with
the SFCs 51 and 59 detailed diagnostic information and react on it.After execution of the OB 82, the processing of the user application is
continued. The diagnostic data remains consistent until leaving the OB 82.

Record set 0 Byte 0 to 3:

Record set 0 (Byte 0 to 3):

Byte	Bit 7 Bit 0	Default
0	Bit 0: error in module	00h
	Bit 1: reserved	
	Bit 2: external error	
	Bit 3: channel error	
	Bit 6 4: reserved	
	Bit 7: wrong parameter in module	
1	Bit 3 0: module class	15h
	0101 analog module	
	Bit 4: channel information present	
	Bit 7 5: reserved	
2	not used	00h
3	Bit 5 0: reserved	00h
	Bit 6: missing (lost) process alarm (see process alarm)	
	Bit 7: reserved	

 Record set 1
 Byte 0 to 11:

 Record set 1 contains the 4byte of record set 0 and 8byte module specific diagnostic data.

The diagnostic bytes have the following assignment:

Byte	Bit 7 Bit 0	Default
0 3	content of record set 0 (see page above)	-
4	Bit 6 0: channel type	71h
	70h: digital input	
	71h: analog input	
	72h: digital output	
	73h: analog output	
	Bit 7: reserved	
5	Bit 7 0: number of diagnostic output bits per channel	04h
6	Bit 7 0: number of similar channels of a module	04h
7	Bit 0: channel error channel 0	00h
	Bit 1: channel error channel 1	
	Bit 2: channel error channel 2	
	Bit 3: channel error channel 3	
	Bit 7 4: reserved	
8	Bit 0: reserved	00h
	Bit 1: parameterization error channel 0	
	Bit 4 2: reserved	
	Bit 5: parameterization error channel 1	
	Bit 6, 7: reserved	
9	Bit 0: reserved	00h
	Bit 1: parameterization error channel 2	
	Bit 4 2: reserved	
	Bit 5: parameterization error channel 3	
	Bit 6, 7: reserved	
10 11	reserved	00h

Process alarm The upper and the lower limit value is parameterizable for every channel. Please regard during parameterization that you have to enable the limit value monitoring in parameter byte 1.

If the signal is beyond the defined operation range, a process alarm is initialized. In the CPU, the process alarm block (OB 40) is called.

The 4byte of process alarm additional information are used as follows:

Bit 7 ... Bit 0 Byte Default 0 Bit 0: upper limit exceeded channel 0 00h Bit 1: upper limit exceeded channel 1 Bit 2: upper limit exceeded channel 2 Bit 3: upper limit exceeded channel 3 Bit 7 ... 4: reserved 1 Bit 0: lower limit underrun channel 0 00h Bit 1: lower limit underrun channel 1 Bit 2: lower limit underrun channel 2 Bit 3: lower limit underrun channel 3 Bit 7 ... 4: reserved 2 reserved 00h 3 reserved 00h

Process alarm additional information

Note!

When a process alarm has not yet been acknowledged by the CPU and a new process alarm of the same type occurs at this channel, a diagnostic interrupt is initialized, containing the information "Process alarm missing/lost" (diagnostic data byte 3).

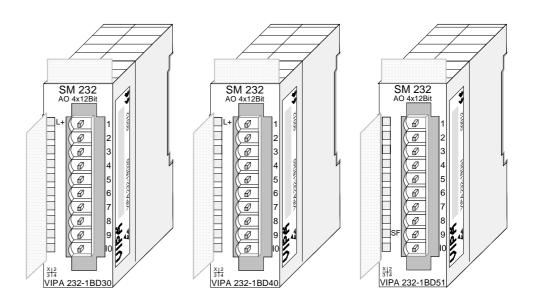
Technical data

Module name	VIPA 231-1FD00
Dimensions and Weight	
Dimensions (WxHxD in mm)	25.4 x 76 x 88mm
Weight	80g
Data for specific module	
Number of inputs	4 differential inputs
Length of cable	
- shielded	200m
Programming specifications	
Input data	8byte (1Word per channel)
Parameter data	32byte
Diagnostic data	12byte
Process interrupt data	4byte
Voltages, Currents, Potentials	
Power supply via backplane bus	5V
Isolation	
- between channels and backplane bus	yes
- between channels	no
Permitted potential difference	
- between channels (U _{CM})	DC 2.0V
- between channels and M _{INTERNAL} (U _{ISO})	DC 75V / AC 60V
Isolation tested with	DC 500V
Current consumption	
- from the backplane bus (5V)	300mA
Power dissipation of the module	1.5W
Analog value generation	
Measuring principle	Successive approximation
Integration time/conversion time/resolution (per channel)	
- parameterizable	no
- Basic conversion time	nx0.2ms
	(n = number of channels)
- Resolution (incl. over range) in bit	15bit + sign
Averaging	2, 4, 8, 16
Suppression of interference	
Noise suppression for f=nx (f1±1%)	
(f1= Interference frequency, n=1,2,)	
- Common-mode interference $(U_{CM} < 1.5V)$	>80dB
Crosstalk between the inputs	>50dB

continued ...

... continue

continue	
Limits of error	VIPA 231-1FD00
Operational limit (in the entire temperature range with reference to the input range)	
- Voltage input ±400mV	±0.4%
- Voltage input ±4V	±0.2%
- Voltage input ±10V	±0.2%
- Current input ±20mA	±0.2%
- Current input 420mA	±0.5%
Basic error (Operational limit at 25°C referred to the input range)	
- Voltage input ±400mV	±0.3%
- Voltage input ±4V	±0.1%
- Voltage input ±10V	±0.1%
- Current input ±20mA	±0.1%
- Current input 420mA	±0.3%
Temperature error (reference to the input range) - via current measurement	±0.005%/K
Linearity error (with reference to the input range)	±0.02%
Repeatability (in steady state at 25°C, reference to the input range)	±0.05%
Status, Interrupts, Diagnostics	
Interrupts	
 Process interrupt when limit has been exceeded 	parameterizable
- Diagnostic interrupt	parameterizable
Diagnostic functions	
- Channel error display	red LED (F0 F3)
 Diagnostic information read-out 	possible
Data for selecting a sensor	
Input range	Input resistance
- Voltage ±400mV, ±4V, ±10V	10MΩ
- Current 420mA, ±20mA	57Ω
Maximum input voltage for voltage input (destruction limit)	max. 15V
Maximum input current for current input (destruction limit)	max. 50mA
Connection of the sensor	
- for measuring voltage	possible
- for measuring current	possible (via external supply)
via 2-wire transmitter	see wiring diagram 3
via 4-wire transmitter	possible


Chapter 7 Analog output modules

Overview This chapter contains a description of the construction and the operation of the VIPA analog output modules.

Contents Topic Page Chapter 7 Analog output modules 7-1 System overview 7-2 General 7-3 Analog value 7-4 232-1BD30 - AO 4x12Bit ±10V, 0 ... 10V - ECO. 7-7 232-1BD40 - AO 4x12Bit, 0/4...20mA - ECO. 7-12 232-1BD51 - AO 4x12Bit, multioutput. 7-17

System overview

Output module SM 232

Order data
output module

Туре	Order number	Page
AO 4x12Bit ±10V, 010V - ECO	VIPA 232-1BD30	7-7
AO 4x12Bit 0/420mA - ECO	VIPA 232-1BD40	7-12
AO 4x12Bit, multioutput	VIPA 232-1BD51	7-17

General

Cabling for analog signals	You must only use screened cable when you are connecting analog signals. These cables reduce the effect of electrical interference. The screen of the analog signal cable should be grounded at both ends. In situations with different electrical potentials, it is possible that a current will flow to equalize the potential difference. This current could interfere with the analog signals. Under these circumstances it is advisable to ground the
	the analog signals. Under these circumstances it is advisable to ground the screen of the signal cable at one end only.

Connecting loads You can use the analog output modules to supply loads and actors with current or voltage.

Note!

Please take always care of the correct polarity when connecting actuators! Please leave the output clamps of not used channels disconnected and set the *output type* of the channel to "deactivated" in the hardware configurator from Siemens.

Parameterization and diagnosis	By using the SFCs 55, 56 and 57 you may change the parameters of the analog modules during runtime via the CPU 21x.
during runtime	For diagnosis evaluation during runtime, you may use the SFCs 51 and 59. They allow you to request detailed diagnosis information and to react to it.

Analog value

Analog valueThe analog values are only processed by the CPU in binary representation.representationHereby the process signals are transformed into digital format in the analog
module and passed on to the CPU as word variable.

The digitized analog value is the same for input and output values at the same nominal range.

		Analog value														
			High byte				Low	ow byte								
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Resolution	SG		Analog value (word)													
12bit + Sign	SG	Rele	Relevant output value X X X													
11bit + Sign	SG	Rele	Relevant output value X X X X													
10bit + Sign	SG	Rele	Relevant output value X X X X													

The resolution depends on the used module as follows:

* The least significant irrelevant bits of the output value are marked by "X".

Sign bit (SG)The algebraic sign bit is represented by Bit 15. Here it is essential:
Bit $15 = "0" \rightarrow$ positive value
Bit $15 = "1" \rightarrow$ negative value

Conversion within the Siemens S5format

Please regard only the Siemens S7 format (two's complement) is supported by the Siemens SIMATIC manager for decimal representation. When the Siemens S5 format is used the decimal values are incorrectly represented.

Within the Siemens S5 format a value may be converted between decimal and output value by means of the following formulas.

+/- 10V		
Voltage	Decimal	Hex
-10V	-16384	C000
-5V	-8192	E000
0V	0	0
5V	8192	2000
101/	16384	4000

0...10V

Voltage	Decimal	Hex
0V	0	0000
5V	8192	2000
10V	16384	4000

1...5V

Voltage	Decimal	Hex
1V	0	0
3V	8192	2000
5V	16384	4000

4....20mA

Current	Decimal	Hex
4mA	0	0
12mA	8192	2000
20mA	16384	4000

+/- 20mA

Current	Decimal	Hex
-20mA	-16384	C000
-10mA	-8192	E000
0mA	0	0
10mA	8192	2000
20mA	16384	4000

0...20mA

Current	Decimal	Hex
0mA	0	0
10mA	8192	2000
20mA	16384	4000

Formulas for the calculation:

 $Value = 16384 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{16384}$ U: voltage, Value: decimal value

Formulas for the calculation:

 $Value = 16384 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{16384}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 16384 \cdot \frac{U-1}{4}, \quad U = Value \cdot \frac{4}{16384} + 1$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 16384 \cdot \frac{I-4}{16}$, $I = Value \cdot \frac{16}{16384} + 4$ I: current, Value: decimal value

Formulas for the calculation: $Value = 16384 \cdot \frac{I}{20}$, $I = Value \cdot \frac{20}{16384}$ I: current, Value: decimal value

Formulas for the calculation: $Value = 16384 \cdot \frac{I}{20}$, $I = Value \cdot \frac{20}{16384}$ I: current, Value: decimal value

Conversion within the Siemens S7format

Within the Siemens S7 format a value may be converted between decimal and output value by means of the following formulas.

Voltage	Decimal	Hex
-10V	-27648	9400
-5V	-13824	CA00
0V	0	0
5V	13824	3600
10V	27648	6C00

0...10V

Voltage	Decimal	Hex
0V	0	0000
5V	13824	3600
10V	27648	6C00

1...5V

Voltage	Decimal	Hex
1V	0	0
3V	13824	3600
5V	27648	6C00

4....20mA

Current	Decimal	Hex
4mA	0	0
12mA	13824	3600
20mA	27648	6C00

+/- 20mA

Current	Decimal	Hex
-20mA	-27648	9400
-10mA	-13824	CA00
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

0...20mA

Current	Decimal	Hex
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U-1}{4}, \quad U = Value \cdot \frac{4}{27648} + 1$ U: voltage, Value: decimal value

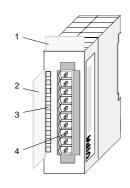
Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, \quad I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I}{20}$, $I = Value \cdot \frac{20}{27648}$ I: current, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I}{20}$, $I = Value \cdot \frac{20}{27648}$ I: current, Value: decimal value

232-1BD30 - AO 4x12Bit ±10V, 0 ... 10V - ECO

Order data AO 4x12Bit, ±10V, 0 ... 10V


VIPA 232-1BD30

DescriptionThis module provides 4 outputs that can be configured individually. The
module occupies a total of 8byte of output data (2byte per channel) in the
process image. These values have to be defined as left justified two's
complement entries.Galvanic isolation between the channels on the module and the backplane
bus is provided by means of DC/DC optocouplers. The module requires an
external supply of DC 24V.

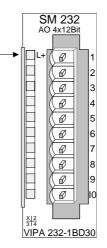
Properties

- 4 outputs with common ground
- Outputs with individually configurable functions
- Suitable for connection to actuators requiring ±10V or 0 ... 10V inputs

Construction

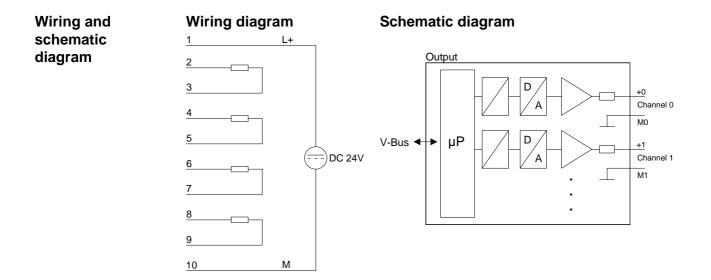
- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

1


2

4

6


Status indicator pin assignment

- LED Description
- L+ LED (green) supply voltage is on

Pin Assignment

- DC 24V supply voltage
- + Channel 0
- 3 Channel 0 common
 - + Channel 1
- 5 Channel 1 common
 - + Channel 2
- 7 Channel 2 common
- 8 + Channel 3
- 9 Channel 3 common
- 10 Supply voltage common

Data output The value of the output data is entered into the data output area. For every channel you may configure the relationship between the output value and the respective voltage value by means of a function-no.

The following table shows the structure of the data output area:

Data output area:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Note!

When new values are transferred from the CPU to the module, the module needs one cycle to update all outputs abbr. if the analog values change within this cycle, these are at least available at the concerning outputs at the end of the next following cycle. **Parameter data** 6byte of parameter data are available for the configuration data. These parameters are stored in non-volatile memory and are available after the unit has been powered off.

The following table shows the structure of the parameter data:

Parameter area:

Byte	Bit 7 Bit 0	Default
0, 1	reserved	00h
2	Function-no. channel 0	09h
3	Function-no. channel 1	09h
4	Function-no. channel 2	09h
5	Function-no. channel 3	09h

Function-no. The assignment of a function-no. to a certain channel happens during parameterization. The function-no. 00h does not influence the function-no. stored in the permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Output range	
00h	Does not affect permanently	stored configuration data	
01h	Voltage ±10V	±12.5V	
	Siemens S5 format	12.5V = max. value before over range (20480)	
	(two's complement)	-1010V = rated range (-1638416384)	
		-12.5V = min. value before under range (-20480)	
05h	Voltage 010V	012.5V	
	Siemens S5 format	12.5V = max. value before over range (20480)	
	(two's complement)	010V = rated range (016384)	
		no under range available	
09h	Voltage ±10V	±11.76V	
	Siemens S7 format	11.76V= max. value before over range (32511)	
	(two's complement)	-10V10V = rated range (-2764827648)	
		-11.76 = min. value before under range (-32512)	
0Dh	Voltage 010V	011.76V	
	Siemens S7 format	11.76V = max. value before over range (32511)	
	(two's complement)	010V = rated range (027648)	
		no under range available	
FFh	Channel not active (turned o	off)	

Note!

- The module is preset to the range "±10V voltage" in S7-format from Siemens.
- When cross over or underdrive range all modes return the value 0.

Technical data

Electrical data	VIPA 232-1BD30	
Number of output channels	4	
Length of cable: shielded	200m	
Supply voltage	DC 24V	
 Inverse polarity protection 	yes	
Potential separation		
 between channels / backplane bus 	yes	
 between channel / power supply of 		
the electronic	yes	
 between the channels 	no	
 channels/load voltage L+ 	yes	
Permitted potential difference		
 between the Outputs and 		
M _{INTERNAL} (U _{ISO})	DC 75V / AC 60V	
Isolation proofed with	DC 500V	
Current consumption		
- via backplane bus	60mA	
 from load voltage L+ (without load) 	100mA	
Power dissipation of the module	2.7W	
Analog value calculation output channels		
Resolution (incl. Overdrive region)		
±10V	11bit + sign	
010V	11bit	
Cycle time (all channels)	700µs	
Settling time		
- impedance load	1.5ms	
 capacitive load 	3.0ms	
- inductive load	-	
Suppression of interference, limits of error	output channels	
Crosstalk between the outputs	> 40dB	
Operational limit (in the entire temperature	range, referring to output range	je)
	Measuring range	Tolerance
Voltage output	±10V	±0.2%
	010V	±0.4%
Basic error limit (operational limit at 25°C,	referring to output range)	
	Measuring range	Tolerance
Voltage output	±10V	±0.1%
	010V	±0.2%
Temperature error	±0.01%/K	
(with reference to the output range)	±0.0170/K	
Linearity error	±0.05%	
(with reference to the output range)	10.00 /0	
Repeatability (in steady state at 25°C	±0.05%	
referred to the output range)	10.0370	
Output ripple;	±0.059	%
range 0 to 50kHz		
(referred to output range)		
	•	continued

continued ...

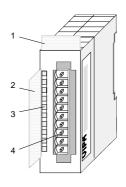
... continue

Data for choosing an actuator		
Output ranges (rated values)		
Voltage	±10V	
	010V	
Burden resistance (in nominal range of the	output)	
at voltage outputs	min. 5kΩ	
- capacitive load	max. 1μF	
Voltage outputs		
Short-circuit protection	yes	
Short-circuit current	max. 6mA	
Destruction limit against voltages/currents		
applied from outside		
Voltage at outputs to M _{ANA}	max. 15V	
Current	max. 30mA	
Connection of actuators		
for voltage output	2conductor connection	
States, Alarms, Diagnosis		
Diagnosis alarm	-	
Diagnosis functions	-	
Sum error monitor	-	
Diagnostic information readable	-	
Substitute value can be applied	-	
Programming specifications		
Input data	-	
Output data	8byte (1word per channel)	
Parameter data	6byte	
Diagnostic data	-	
Dimensions and weight	·	
Dimensions (WxHxD)	25.4x76x88mm	
Weight	100g	
	•	

232-1BD40 - AO 4x12Bit, 0/4...20mA - ECO

Order data AO 4x12Bit, 0...20mA, 4 ... 20mA

VIPA 232-1BD40


Description This module provides 4 outputs that can be configured individually. The module occupies a total of 8byte of output data (2byte per channel) in the process image. These values have to be defined as left justified two's complement entries.

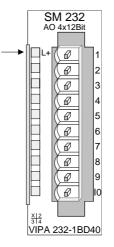
Galvanic isolation between the channels on the module and the backplane bus is provided by means of DC/DC optocouplers. The module requires an external supply of DC 24V.

Properties

- 4 outputs with common ground
- Outputs with individually configurable functions
- Suitable for actuators with 0 ... 20mA or 4 ... 20mA input

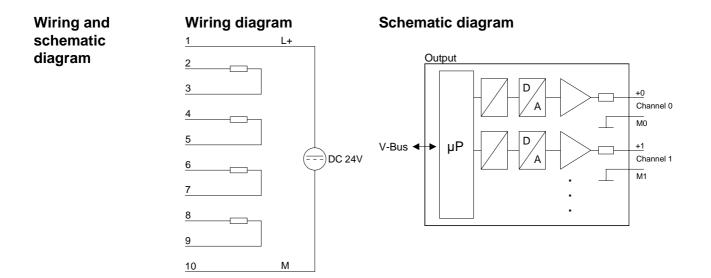
Construction

- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector


4

6

Status indicator pin assignment


LED Description

L+ LED (green) supply voltage is on

Pin	Assignment
	Assignment

- 1 DC 24V supply voltage
- 2 + Channel 0
- 3 Channel 0 common
 - + Channel 1
- 5 Channel 1 common
 - + Channel 2
- 7 Channel 2 common
- 8 + Channel 3
- 9 Channel 3 common
- 10 Supply voltage common

Data output The value of the output data is entered into the data output area. For every channel you may configure the relationship between the output value and the respective current value by means of a function-no.

The following table shows the structure of the data output area:

Data output area:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Note!

When new values are transferred from the CPU to the module, the module needs one cycle to update all outputs abbr. if the analog values change within this cycle, these are at least available at the concerning outputs at the end of the next following cycle. **Parameter data** 6Byte of parameter data are available for the configuration data. These parameters are stored in non-volatile memory and are available after the unit has been powered off.

The following table shows the structure of the parameter data:

Parameter area:

Byte	Bit 7 Bit 0	Default
0, 1	reserved	00h
2	Function-no. channel 0	0Eh
3	Function-no. channel 1	0Eh
4	Function-no. channel 2	0Eh
5	Function-no. channel 3	0Eh

Function-no. The assignment of a function-no. to a certain channel happens during parameterization. The function-no. 00h does not influence the function-no. stored in the permanent parameterization data.

Assigning FFh deactivates the according channel.

No.	Function	Output range
00h	Does not affect permanently stored configuration data	
04h	Current 420mA	024mA
	Siemens S5 format	24mA = max. value before over range (20480)
	(two's complement)	420mA = rated range (016384)
		0mA = min. value before under range (-4096)
06h	Current 020mA	025mA
	Siemens S5 format	25mA = max. value before over range (20480)
	(two's complement)	020mA = rated range (016384)
		no under range available
0Ch	Current 420mA	022.81mA
	Siemens S7 format	22.81mA = max. value before over range (32511)
	(two's complement)	420mA = rated range (027648)
		0mA = min. value before under range (-6912)
0Eh	Current 020mA	023.52mA
	Siemens S7 format	23.52mA = max. value before over range (32511)
	(two's complement)	020mA = rated range (027648)
		no under range available
FFh	Channel not active (turned off)	

Note!

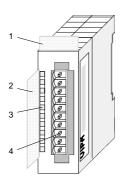
- The module is preset to the range "0...20mA" in S7-format from Siemens.
- When cross over or underdrive range all modes return the value 0.

Technical data

Electrical data	VIPA 232-1BD40	
Number of output channels	4	
Length of cable: shielded	200m	
Supply voltage	DC 24V	
- Inverse polarity protection	yes	
Potential separation		
 between channels / backplane bus 	yes	
 between channel / power supply of 		
the electronic	yes	
 between the channels 	no	
 between channels/load voltage L+ 	yes	
Permitted potential difference		
 between the outputs and 		
M _{INTERNAL} (U _{ISO})	DC 75V / AC 60V	
Isolation proofed with	DC 500V	
Current consumption		
- via backplane bus	60mA	
- from load voltage L+ (without load)	50mA	
Power dissipation of the module	1.5W	
Analog value calculation output channels		
Resolution (incl. Overdrive region)		
020mA	12Bit	
420mA	11Bit	
Cycle time	700µs	
Settling time		
- impedance load	0.03ms	
- capacitive load	-	
- inductive load	1.5ms	
Suppression of interference, limits of error		
Crosstalk between the outputs	> 40dB	
Operational limit (in the entire temperature		
	Measuring range	Tolerance
Current output	020mA	±0.4%
	420mA	±0.5%
Basic error limit (during temperature is 25°	C, referring to output range)	
	Measuring range	Tolerance
Current output	020mA	±0.2%
	420mA	±0.3%
Temperature error	±0.01%/	/K
(with reference to the output range)		
Linearity error	±0.05%	, 0
(with reference to the output range)		
Repeatability (in steady state at 25°C	±0.05%	, 0
referred to the output range)		
Output ripple;	±0.05%	0
range 0 to 50kHz		
(referred to output range)		continued

continued ...

... continue


Data for choosing an actuator	Data for choosing an actuator		
Output ranges (rated values)			
Current	020mA		
	420mA		
Burden resistance (in nominal range of the	output)		
at current outputs	max. 350Ω		
inductive load	max. 10mH		
Current outputs			
No-load voltage	12V		
Destruction limit against voltages/currents applied from outside			
Voltage at outputs to M _{ANA}	max. 12V		
Current	max. 30mA		
Connection of actuators			
for current output	2conductor connection		
States, Alarms, Diagnosis			
Diagnosis alarm	-		
Diagnosis functions	-		
Sum error monitor	-		
Diagnostic information readable	-		
Substitute value can be applied	-		
Programming specifications			
Input data	-		
Output data	8byte (1 word per channel)		
Parameter data	6byte		
Diagnostic data	-		
Dimensions and weight			
Dimensions (WxHxD)	25.4x76x88mm		
Weight	100g		

232-1BD51 - AO 4x12Bit, multioutput

Order data	AO 4x12Bit multioutput Please be aware that this Module can slave with revision level 4 or less. In the Module with order-no.: VIPA 232-1BD50	is case please use our (spare-part)
Description	This module provides 4 outputs that of module occupies a total of 8byte of out process image. These values have to complement entries.	put data (2byte per channel) in the
	Galvanic isolation between the channels bus is provided by means of DC/DC module requires an external supply of D	converters and optocouplers. The
Properties	 4 outputs with common ground 	

- Outputs with individually configurable functions
- Suitable for connection to actuators requiring ±10V, 1 ... 5V, 0 ... 10V, ±20mA, 4 ... 20mA or 0 ... 20mA inputs
- Diagnostic LED and diagnostic function

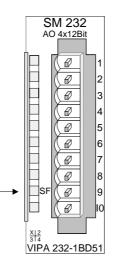
Construction

- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

1

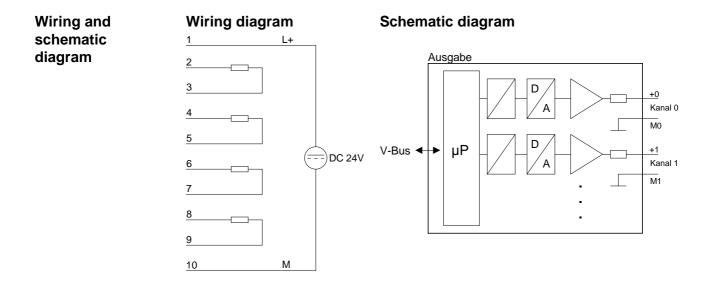
2

3


4

8

Status indicator pin assignment


LED Description

- SF Diagnostic LED (red) turned on by:
 - a short circuit is detected at the control voltage output
 - an open circuit is detected on the current output line
 - wrong parameter at module
 - the module does not receive supply voltage

Pin Assignment

- DC 24V supply voltage
- + Channel 0
- Channel 0 common
- + Channel 1
- 5 Channel 1 common
- 6 + Channel 2
- 7 Channel 2 common
 - + Channel 3
- 9 Channel 3 common
- 10 Supply voltage common

Attention!

Switching off and on the load nominal voltage (L+) could lead to wrong values on the output for ca. 80ms!

Data output

The value of the output data is entered into the data output area. For every channel you may configure the relationship between the output value and the respective current or voltage by means of a function-no..

The following table shows the structure of the data output area:

Data	output	area:
------	--------	-------

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Note!

When new values are transferred from the CPU to the module, the module needs one cycle to update all outputs abbr. if the analog values change within this cycle, these are at least available at the concerning outputs at the end of the next following cycle. **Parameter data** 6Byte of parameter data are available for the configuration data. These parameters are stored in non-volatile memory and are available after the unit has been powered off.

The following table shows the structure of the parameter data:

Parameter	area:
i aramotor	aroa.

Byte	Bit 7 Bit 0
0	Diagnostic interrupt byte:
	Bit 5 0: reserved
	Bit 6: 0: diagnostic interrupt inhibited
	1: diagnostic interrupt enabled
	Bit 7: reserved
1	reserved
2	Function-no. channel 0
3	Function-no. channel 1
4	Function-no. channel 2
5	Function-no. channel 3

Parameter

Diagnostic interrupt

You can enable diagnostic interrupts by means of bit 6 of byte 0. When an error occurs 4 diagnostic bytes are transmitted to the master system.

Function-no.

Here you enter the function-no. of the output function for every channel. The relationship between the function number and the output functions is available from the function-no. allocation table.

Diagnostic data When you enable alarms in byte 0 of the parameter area, modules will transfer 4 diagnostic bytes with pre-defined contents to your master in case of an error. Please note that analog modules only use the first two bytes for diagnostic purposes. The remaining bytes are not used.

The structure of the diagnostic bytes is as follows:

Diagnostic data:

Byte	Bit 7 Bit 0		
0	Bit 0: Module malfunction		
	Bit 1: reserved		
	Bit 2: External error		
	Bit 3: Channel error present (wire break/short circuit)		
	Bit 6 4: reserved		
	Bit 7: Wrong parameter at module		
1	Bit 3 0: class of module		
	0101 analog module		
	Bit 4: channel information available		
	Bit 7 5: reserved		
2	not assigned		
3	not assigned		

Function-no. The assignm allocation parameteriza		gnment of a function-no. to a certain channel happens during rization.	
No.	Function	Output range	
00h	Does not affect permanent	y stored configuration data	
01h	Voltage ±10V Siemens S5 format (two's complement)	±12.5V 12.5V = max. value before over range (20480) -1010V = rated range (-1638416384) -12.5V = min. value before under range (-20480)	
02h	Voltage 15V Siemens S5 format (two's complement)	06V 6V = max. value before over range (20480) 15V = rated range (016384) 0V = min. value before under range (-4096)	
05h	Voltage 010V Siemens S5 format (two's complement)	012.5V 12.5V = max. value before over range (20480) 010V = rated range (016384) no under range available	
09h	Voltage ±10V Siemens S7 format (two's complement)	\pm 11.76V 11.76V= max. value before over range (32511) -10V10V = rated range (-2764827648) -11.76 = min. value before under range (-32512)	
0Ah	Voltage 15V Siemens S7 format (two's complement)	05.704V 5.704V = max. value before over range (32511) 15V = rated range (027648) 0V = min. value before under range (-6912)	
0Dh	Voltage 010V Siemens S7 format (two's complement)	011.76V 11.76V = max. value before over range (32511) 010V = rated range (027648) no under range available	
03h	Current ±20mA Siemens S5 format (two's complement)	±25mA 25mA = max. value before over range (20480) -2020mA = rated range (-1638416384) -25mA = min. value before under range (-20480)	
04h	Current 420mA Siemens S5 format (two's complement)	024mA 24mA = max. value before over range (20480) 420mA = rated range (016384) 0mA = min. value before under range (-4096)	
06h	Current 020mA Siemens S5 format (two's complement)	025mA 25mA = max. value before over range (20480) 020mA = rated range (016384) no under range available	
0Bh	Current ±20mA Siemens S7 format (two's complement)	±23.52mA 23.52mA = max. value before over range (32511) -2020mA = rated range (-2764827648) -23.52mA = min. value before under range (-32512)	
0Ch	Current 420mA Siemens S7 format (two's complement)	022.81mA 22.81mA = max. value before over range (32511) 420mA = rated range (027648) 0mA = min. value before under range (-6912)	
0Eh	Current 020mA Siemens S7 format (two's complement)	023.52mA 23.52mA = max. value before over range (32511) 020mA = rated range (027648) no under range available	
FFh	Channel not active (turned off)		

Note!

The module is preset to the range " \pm 10V voltage" in Siemens S7-format. When cross over or underdrive range all modes return the value 0.

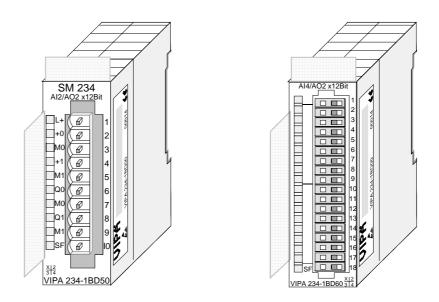
Technical data

Electrical data	VIPA 232-1BD51	
Number of output channels	4	
Length of cable: shielded	200m	
Supply voltage	DC 24V	
- Inverse polarity protection	yes	
Potential separation		
- between channels / backplane bus	yes	
- between channel / power supply of	-	
the electronic	yes	
- between the channels	no	
 between channels/load voltage L+ 	yes	
Isolation proofed with	DC 500V	
Current consumption		
- via backplane bus	75mA	
- from load voltage L+ (without load)	60mA	
Power dissipation of the module	1.8W	
Analog value calculation output channels		
Resolution (incl. Overdrive region)		
±10V, ±20mA	11bit + sign	
4 20mA, 1 5V	10bit	
0 10V, 0 20mA	11bit	
Conversion time (per channel)	450µs	
Settling time	•	
- impedance load	0.05ms	
- capacitive load	0.5ms	
- inductive load	0.1ms	
Suppression of interference, limits of error	output channels	
Crosstalk between the outputs	> 40)dB
Operational limit (in the entire temperature	range, referring to output ra	nge)
· · · · ·	Measuring range	Tolerance
Voltage output	1 5V	±0.8% ¹⁾
	0 10V	$\pm 0.6\%^{1)}$
	±10V	$\pm 0.4\%^{1)}$
Current output	4 20mA	$\pm 0.8\%^{2)}$
	0 20mA	$\pm 0.6\%^{2)}$
	±20mA	$\pm 0.3\%^{2)}$
Basic error limit (during temperature is 25°	C, referring to output range)	
	Measuring range	Tolerance
Voltage output	1 5V	$\pm 0.4\%^{1)}$
	0 10V	$\pm 0.3\%^{1)}$
	±10V	±0.2% ¹⁾
Current output	4 20mA	$\pm 0.5\%^{2)}_{2}$
	0 20mA	±0.4% ²⁾
	±20mA	$\pm 0.2\%^{2)}$
Temperature error ±0.01%/K		
(with reference to the output range)		continued

Linearity error	±0.05%
(with reference to the output range)	
Repeatability (in steady state at 25°C	±0.05%
referred to the output range)	0.070/
Output ripple;	±0.05%
range 0 to 50kHz	
(referred to output range)	
Data for choosing an actuator	
Output ranges (rated values)	
Voltage	1 5V, 0 10V, ±10V
Current	4 20mA, 0 20mA, ±20mA
Burden resistance (in nominal range of the	
at voltage outputs	min. 1kΩ
- capacitive load	max. 1μF
at current outputs	max. 500Ω
 inductive load 	max. 10mH
Voltage outputs	
Short-circuit protection	yes
Short-circuit current	max. 31mA
Current outputs	
No-load voltage	max. 13V
Destruction limit against voltages/currents	
applied from outside	
Voltage at outputs to M _{ANA}	max. 15V
Current	max. 30mA
Connection of actuators	
for voltage output	2conductor connection
for current output	2conductor connection
States, Alarms, Diagnosis	
Diagnosis alarm	parameterizable
Diagnosis functions	parameterizable
Sum error monitor	red LED SF
Diagnostic information readable	possible
Substitute value can be applied	no
Programming specifications	
Input data	-
Output data	8byte (1 word per channel)
Parameter data	
	4byte
Dimensions (WxHxD)	
	25.4x76x88mm
Parameter data Diagnostic data Dimensions and weight	6byte

 $^{1)}$ The error limits are measured with a load of R=1G $\Omega.$ For voltage output the output impedance is 30 $\Omega.$

 $^{2)}$ The error limits are measured with a load of R=10 $\!\Omega.$


Chapter 8 Analog input/output modules

Overview This chapter contains a description of the construction and the operation of the VIPA analog input/output modules.

System overview

Input/output modules SM 234

Order data	Туре	Order number	Page
input/output	AI2/AO 2x12Bit, multiin-/output	VIPA 234-1BD50	8-4
modules	AI4/AO 2x12Bit, multiin-/output	VIPA 234-1BD60	8-17

Security note for range allocation

Attention!

Please regard that the described modules have no hardware protection against wrong parameterization. The allocation of the according measuring res. output range is only during project engineering.

For example, the modules may be damaged when you connect a voltage at parameterized current measuring.

Please be extremely careful during project engineering.


General

- **Cabling for analog signals** You must only use screened twisted-pair cable for analog signals. These cables reduce the effect of electrical interference. The screen of the analog signal cable should be grounded at both ends. In situations where the cable ends are at different electrical potentials, it is possible that a current will flow to equalize the potential difference. This current could interfere with the analog signals. Under these circumstances it is advisable to ground the screen of the signal cable at one end only.
- **Connecting Sensors** Our analog modules provide a large number of configuration options suitable for 2wire and 4wire transducers. Please remember that transducers require an external power source. You have to connect an external power supply in line with any 2wire transducer.

The following diagram explains the connection of 2- and 4wire transducers:

2wire interfacing

4wire interfacing

Connecting loads and actuators Due to the fact that actuators also require a source of external power, they may also be connected with 2 or 4wires. Where control signals are supplied to 2wire actuators a power supply has to be connected in series with the control cable. 4wire actuators need an external power source.

Note!

Please ensure that you connect actuators to the correct polarity! Unused output terminals must not be connected!

Parameterization and diagnosis during runtime By using the SFCs 55, 56 and 57 you may change the parameters of the analog modules during runtime via the CPU 21x.

For diagnosis evaluation during runtime, you may use the SFCs 51 and 59. They allow you to request detailed diagnosis information and to react to it.

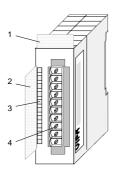
Attention!

Temporarily not used inputs have to be connected with the concerning ground at activated channel. When deactivating unused channels by means of FFh, this is not required.

The following circumstances may cause damages at the analog module:

- The external supply of the input (current/voltage) <u>must not</u> be present as long as the backplane bus of the CPU is still without current supply!
- Parameterization and connection of the input must be congruent!
- You must not apply a voltage >15V to the input!

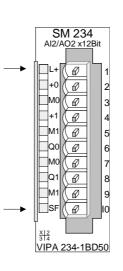
234-1BD50 - AI 2/AO 2x12Bit - Multiin-/output


- Order dataAI 2/AO 2x12Bit Multiin-/outputVIPA 234-1BD50
- **Description** This module has 2 analog inputs and 2 analog outputs that may be configured individually. The module occupies a total of 4byte of input and 4byte of output data.

Galvanic isolation between the channels on the module and the backplane bus is provided by means of DC/DC converters and optocouplers. The module requires an external supply of DC 24V.

Properties • 2 inputs and 2 outputs with common ground

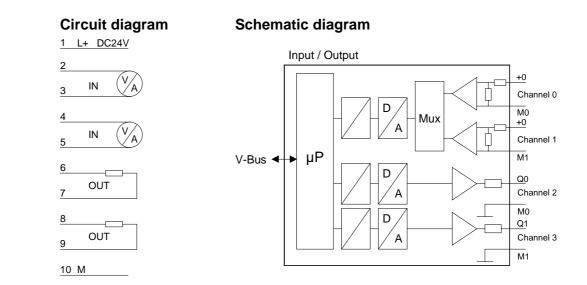
- In-/Outputs with individually configurable functions
- Suitable for encoder res. actuators with in- res. output ranges of: ±10V, 1...5V, 0...10V, ±20mA, 0...20mA or 4...20mA
- Diagnostic LED


Construction

- [1] Label for the name of the module
- [2] Label for the bit address with description
- [3] LED status indicator
- [4] Edge connector

Status indicator Pin assignment

- LED Description
- L+ LED (yellow) Supply voltage present
- SF Sum error LED (red) turned on as soon as an channel error is detected res. an entry in the diagnostic bytes happened


Pin Assignment

- 1 DC 24V supply voltage
- 2 pos. connection Ch.0
- 3 Ground Channel 0
- 4 pos. connection Ch.1
- 5 Ground Channel 1
- 6 pos. connection Ch.2
- 7 Ground Channel 2
- 8 pos. connection Ch.3
- 9 Ground Channel 3
- 10 Supply voltage Ground

Circuit and

schematic

diagram

Attention!

The following circumstances may cause damages at the analog module:

- The external supply of the input (current/voltage) <u>must not</u> be present as long as the backplane bus of the CPU is still without current supply!
- Parameterization and connection of the input must be congruent!
- You must not apply a voltage >15V to the input!

Data input/ data output range

Data input range:

During the measuring, the measuring values are stored in the data input area with the following assignment.:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1

Note!

At 3wire res. 4wire measuring, only channel 0 is used.

Data output range:

For output of the data you set a value in the data output area. The functionality can be set by means of function-no. for each channel.

Byte	Bit 7 Bit 0
0	High-Byte channel 2
1	Low-Byte channel 2
2	High-Byte channel 3
3	Low-Byte channel 3

Parameter data 12byte of parameter data are available for the configuration. These parameters are stored in non-volatile memory and are available after the unit has been powered off.

The following table shows the structure of the parameter data:

Byte	Bit 7 Bit 0	Default
0	Wire break recognition and diagnostic interrupt:	00h
	Bit 0: Wire break recognition channel 0	
	0: deactivated	
	1: activated	
	Bit 1: Wire break recognition channel 1	
	0: deactivated 1: activated	
	Bit 5 2: reserved	
	Bit 6: 0: diagnostic interrupt inhibited	
	1: diagnostic interrupt enabled	
	Bit 7: reserved	
1	reserved	00h
	Bit 0: reserved	0011
	Bit 1: reserved	
	Bit 2: CPU-Stop reaction for channel 2	
	0: Set replacement value channel 2^{*}	
	1: Store last value channel 2	
	Bit 3: CPU-Stop reaction for channel 3	
	0: Set replacement value channel 3 1: Store last value channel 3	
	Bit 7 4: reserved	
2	Function-no. channel 0 (see table input ranges)	28h
3	Function-no. channel 1	28h
	(see table input ranges)	
4	Function-no. channel 2	09h
	(see table input ranges)	
5	Function-no. channel 3	09h
	(see table input ranges)	006
6	Meas. cycle channel 0	00h
7	Meas. cycle channel 1	00h
8	High-Byte replacement value channel 2	00h
9	Low-Byte replacement value channel 2	00h
10	High-Byte replacement value channel 3	00h
11	Low-Byte replacement value channel 3 want to get 0A res. 0V as output value at CPU-STOP, you	00h

If you want to get 0A res. 0V as output value at CPU-STOP, you have to set the following replacement values at current output (4...20mA) res. voltage output (1...5V): E500h for the S7 format from Siemens and F000h for the S5 format from Siemens.

Parameter

Wire break recognition

The bits 0 and 1 of byte 0 allow you to activate the wire break recognition for the input channels. The wire break recognition is only available for the current measuring range of 4...20mA. A wire break is recognized when the current input during current measuring sinks under 1.18mA.

A wire break at activated wire break recognition causes an entry in the diagnosis area. This is shown via the SF-LED.

If additionally a diagnostic interrupt is activated, a diagnosis message is sent to the superordinated system.

Diagnostic interrupt

With the help of bit 6 of byte 0, you may release the diagnostic interrupt. In case of an error, the *record set 0* with a size of 4byte is transferred to the superordinated system.

More detailed information is to find below under "Diagnostic data".

CPU-Stop reaction and replacement value

With Bit 2 and 3 of byte 1 and byte 8 ... 11 you may set the reaction of the module at CPU-Stop for every output channel.

Via Byte 8 ... 11 you predefine a replacement value for the output channel as soon as the CPU switches to Stop.

By setting Bit 2 res. 3, the last output value remains in the output at CPU-Stop. A reset sets the replacement value.

Function-no.

Here you set the function-no. of your measuring res. output function for every channel. Please see the according table next page.

Meas. cycle

Here you may set the transducer velocity for every input channel. Please regard that a higher transducer velocity causes a lower resolution because of the lower integration time.

The data transfer format remains unchanged. Only the lower bits (LSBs) are not longer relevant for the analog value.

Structure Meas. cycle Byte:

Byte	Bit 7 Bit 0	Resolution	Default
6 7	Bit 3 0: Velocity per channel		00h
	0000 15 conversions/s	16	
	0001 30 conversions/s	16	
	0010 60 conversions/s	15	
	0011 123 conversions/s	14	
	0100 168 conversions/s	12	
	0101 202 conversions/s	10	
	0110 3.7 conversions/s	16	
	0111 7.5 conversions/s	16	
	Bit 7 4: reserved		

Function-no. assignment

The assignment of a function-no. to a certain channel happens during parameterization. The function-no. 00h does not influence the function-no. stored in the permanent parameterization data.

By entering FFh you may deactivate the concerning channel.

The following tables list all functions that are supported by the depending channel.

Note!

When exceeding the overdrive region, the value 7FFFh (32767) is thrown, at underrun of the underdrive region the value is 8000h (-32768).

Input range (channel 0, channel 1)

No.	Function	Measuring range / representation
00h	Does not affect permanently stored configuration data.	
3Bh	Voltage ±10V	±12.5V /
	Siemens S5 format	12.5V = End overdrive region (20480)
	(two's complement)	-1010V = nominal range (-1638416384)
		-12.5V = End underdrive region (-20480)
2Bh	Voltage ±10V	±12.5V /
	Siemens S5 format	12.5V = End overdrive region (20480)
	(value and sign)	-1010V = nominal range (-1638416384)
		-12.5V = End underdrive region (-20480)
72h	Voltage 15V	06V
	Siemens S5 format	6V = End overdrive region (20480)
	(value and sign)	15V = nominal range (016384)
		0V = End underdrive region (-4096)
75h	Voltage 010V	012.5V
	Siemens S5 format	12.5V = End overdrive region (20480)
	(value and sign)	010V = nominal range (016384)
		no underdrive region available
28h	Voltage ±10V	±11.76V /
	Siemens S7 format	11.76V= End overdrive region (32511)
	(two's complement)	-1010V= nominal range (-2764827648)
7.4.1		-11.76V= End underdrive region (-32512)
7Ah	Voltage 15V	05.704V
	Siemens S7 format	5.704V = End overdrive region (32511)
	(two's complement)	15V = nominal range (027648)
		0V = End underdrive region (-6912)

No.	Function	Measuring range / representation
7Dh	Voltage 010V	011.76V
	Siemens S7 format	11.76V= End overdrive region (32511)
	(two's complement)	010V = nominal range (027648)
		no underdrive region available
3Ah	Current ±20mA	±25.0mA /
	Siemens S5 format	25.0mA = End overdrive region (20480)
	(two's complement)	-2020mA = nominal range (-1638416384)
		-25.0mA = End underdrive region (-20480)
2Fh	Current ±20mA	±25.0mA /
	Siemens S5 format	25.0mA = End overdrive region (20480)
	(value and sign)	-2020mA = nominal range (-1638416384)
		-25.0mA = End underdrive region (-20480)
2Eh	Current 420mA	0.8+24.0mA /
	Siemens S5 format	24.0mA = End overdrive region(20480)
	(value and sign)	4 20mA = nominal range (016384)
		0.8mA = End underdrive region (-3277)
76h	Current 020mA	025mA
	Siemens S5 format	25mA = End overdrive region (20480)
	(value and sign)	020mA = nominal range (016384)
		no underdrive region available
2Ch	Current ±20mA	±23.51mA /
	Siemens S7 format	23.51mA = End overdrive region (32511)
	(two's complement)	-2020mA = nominal range (-2764827648)
		-23.51mA = End underdrive region (-32512)
2Dh	Current 420mA	1.185+22.81mA /
	Siemens S7 format	22.81mA = End overdrive region (32511)
	(two's complement)	420mA = nominal range (027648)
		1.18mA = End underdrive region (-4864)
7Eh	Current 020mA	023.52mA
	Siemens S7 format	23.52mA = End overdrive region (32511)
	(two's complement)	020mA = nominal range (027648)
		no underdrive region available
FFh	Channel not active (turned off)	

... continue function-no. input range (channel 0, channel 1)

Note!

The module is preset to the range " $\pm 10 \text{V}$ voltage" in S7 format from Siemens.

No.	Function	Output or input range
00h	Does not affect permanently stored	configuration data
01h	Voltage ±10V	±12.5V
	Siemens S5 format	12.5V = End overdrive region (20480)
	(two's complement)	-1010V = nominal range (-1638416384)
		-12.5V = End underdrive region (-20480)
02h	Voltage 15V	06V
	Siemens S5 format	6V = End overdrive region (20480)
	(two's complement)	15V = nominal range (016384)
		0V = End underdrive region (-4096)
05h	Voltage 010V	012.5V
	Siemens S5 format	12.5V = End overdrive region (20480)
	(two's complement)	010V = nominal range (016384)
		no underdrive region available
09h	Voltage ±10V	±11.76V
	Siemens S7 format	11.76V= End overdrive region (32511)
	(two's complement)	-10V10V = nominal range (-2764827648)
		-11.76 = End underdrive region (-32512)
0Ah	Voltage 15V	05.704V
	Siemens S7 format	5.704V = End overdrive region (32511)
	(two's complement)	15V = nominal range (027648)
	(0V = End underdrive region (-6912)
0Dh	Voltage 010V	011.76V
0211	Siemens S7 format	11.76V= End overdrive region (32511)
	(two's complement)	010V = nominal range (027648)
		no underdrive region available
03h	Current ±20mA	±25.0mA
	Siemens S5 format	25mA = End overdrive region (20480)
	(two's complement)	-2020mA = nominal range (-1638416384)
		-25mA = End underdrive region (20480)
04h	Current 420mA	024mA
•	Siemens S5 format	24mA = End overdrive region (20480)
	(two's complement)	420mA = nominal range (016384)
		OmA = End underdrive region (-4096)
06h	Current 020mA	025mA
	Siemens S5 format	25mA = End overdrive region (20480)
	(two's complement)	020mA = nominal range (016384)
		no underdrive region available
0Bh	Current ±20mA	±23.52mA
0211	Siemens S7 format	23.52mA = End overdrive region (32511)
	(two's complement)	-2020mA = nominal range (-2764827648)
		-23.52mA = End underdrive region (-32512)
0Ch	Current 420mA	022.81mA
0011	Siemens S7 format	22.81mA = End overdrive region (32511)
	(two's complement)	420mA = nominal range (027648)
		OmA = End underdrive region (-6912)
0Eh	Current 020mA	023.52mA
UEII	Siemens S7 format	23.52mA = End overdrive region (32511)
	(two's complement)	020mA = nominal range (027648)
		no underdrive region available

Output range (Channel 2, Channel 3)

Note!

Leaving the defined range, the output is 0V res. 0A!

Numeric notation
in SiemensIn Siemens S5 format, input data is saved into a word. The word consists
of the binary value and the information bits.S5 formatPlease regard only the Siemens S7 format (two's complement) is

Supported by the Siemens SIMATIC manager for decimal representation. When the Siemens S5 format is used the decimal values are incorrectly represented.

Numeric notation:

Byte	Bit 7 Bit 0
0	Bit 0: overflow bit
	0: value within measuring range
	1: measuring range exceeded
	Bit 1: error bit (set by internal errors)
	Bit 2: activity bit (always 0)
	Bit 7 3: binary measured value
1	Bit 6 0: binary measured value
	Bit 7: sign
	0 positive
	1 negative

+/- 10V (two's complement)

Voltage	Decimal	Hex
-10V	-16384	C000
-5V	-8192	E000
0V	0	0000
5V	8192	2000
10V	16384	4000

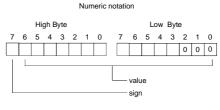
+/- 10V (value and sign)

1/ 101 (10100 011	a e.g,	
Voltage	Decimal	Hex
-10V	-16384	C000
-5V	-8192	A000
0V	0	0000
5V	8192	2000
10V	16384	4000

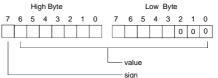
<u>4 ... 20mA / 1 ... 5V (value and sign)</u>

Current / Voltage	Decimal	Hex
4mA / 1V	0	0000
12mA / 3V	8192	2000
20mA / 5V	16384	4000
-		

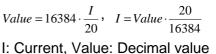
+/- 20mA (two's complement)

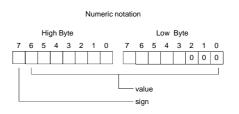

Current	Decimal	Hex
-20mA	-16384	C000
-10mA	-8192	E000
0mA	0	0000
10mA	8192	2000
20mA	16384	4000

+/- 20mA (value and sign)


Current	Decimal	Hex
-20mA	-16384	C000
-10mA	-8192	A000
0mA	0	0000
10mA	8192	2000
20mA	16384	4000

Formulas for the calculation:


$Value = 16384 \cdot \frac{U}{10},$	$U = Value \cdot \frac{10}{16384}$
U: voltage, Value:	Decimal value



Formula for the calculation:

Numeric notation in Siemens S7 format

The analog values are represented in two's complement format.

Numeric representation.

Byte	Bit 7 Bit 0
0	Bit 7 0: binary measured vale
1	Bit 6 0: binary measured vale
	Bit 7: sign
	0 positive
	1 negative

+/- 10V

+ /- 10V		
Voltage	Decimal	Hex
-10V	-27648	9400
-5V	-13824	CA00
0V	0	0
5V	13824	3600
10V	27648	6C00
0 101/		

<u>0...10V</u>

Decimal	Hex
0	0000
13824	3600
27648	6C00
	0 13824

Decimal	Hex
0	0
13824	3600
27648	6C00
	0 13824

+/-4V

Voltage	Decimal	Hex
-4V	-27648	9400
0V	0	0
4V	27648	6C00

+/-400mV

Voltage	Decimal	Hex
-400mV	-27648	9400
0V	0	0
400mV	27648	6C00

4....20mA

Current	Decimal	Hex
4mA	0	0
12mA	13824	3600
20mA	27648	6C00

+/- 20mA

Current	Decimal	Hex
-20mA	-27648	9400
-10mA	-13824	CA00
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}, \quad U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U-1}{4}, \quad U = Value \cdot \frac{4}{27648} + 1$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U}{4}$, $U = Value \cdot \frac{4}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{U}{400}, \quad U = Value \cdot \frac{400}{27648}$ U: voltage, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, \quad I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value Formulas for the calculation: $Value = 27648 \cdot \frac{I}{20}, \quad I = Value \cdot \frac{20}{27648}$ I: current, Value: decimal value

Diagnostic data The diagnostic data uses 12byte and are stored in the record sets 0 and 1 of the system data area.

When you enable the diagnostic interrupt in byte 0 of the parameter area, modules will transfer *record set 0* to the superordinated system when an error is detected.

Record set 0 has a predefined content and a length of 4byte. The content of the record set may be read in plain text via the diagnostic window of the CPU.

For extended diagnosis during runtime, you may evaluate the 12byte wide *record set 1* via the SFCs 51 and 59.

Evaluate diagnosis At present diagnosis, the CPU interrupts the user application and branches into the OB 82. This OB gives you detailed diagnostic data via the SFCs 51 and 59 when programmed correctly.

After having processed the OB 82, the user application processing is continued. Until leaving the OB 82, the data remain consistent.

Record set 0 Byte 0 to 3:

Record set 0 (Byte 0 to 3):

Byte	Bit 7 Bit 0	Default
0	Bit 0: Module malfunction	00h
	Bit 1: reserved	
	Bit 2: External error	
	Bit 3: Channel error present	
	Bit 4: external supply voltage is missing	
	Bit 5,6: reserved	
	Bit 7: Wrong parameters in the module	
1	Bit 3 0: Module class	15h
	0101 Analog module	
	Bit 4: Channel information present	
	Bit 7 5: reserved	
2	reserved	00h
3	reserved	00h

Record set 1Byte 0 to 11:The record set 1 contains the 4byte of record set 0 and additional 8byte
module specific diagnostic data.

The diagnostic bytes have the following assignment:

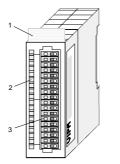
Record set 1 (Byte 0 to 11):

Byte	Bit 7 Bit 0	Default
0 3	Content record set 0 (see page before)	-
4	Bit 6 0: Channel type	74h
	70h: Digital input	
	71h: Analog input	
	72h: Digital output	
	73h: Analog output	
	74h: Analog in-/output	
	Bit 7: reserved	
5	Bit 7 0: Number of diagnostic bits of the module per channel	08h
6	Bit 7 0: Number of identical channels of a module	04h
7	Bit 0: Channel error Channel 0	00h
	Bit 1: Channel error Channel 1	
	Bit 2: Channel error Channel 2	
	Bit 3: Channel error Channel 3	
	Bit 7 4: reserved	
8	Bit 0: Wire break Channel 0	00h
	Bit 1: Parameterization error Channel 0	
	Bit 2: Measuring range underflow Channel 0	
	Bit 3: Measuring range overflow Channel 0	
	Bit 7 4: reserved	
9	Bit 0: Wire break Channel 1	00h
	Bit 1: Parameterization error Channel 1	
	Bit 2: Measuring range underflow Channel 1	
	Bit 3: Measuring range overflow Channel 1	
	Bit 7 4: reserved	
10	Bit 0: Wire break at current output res. short circuit at voltage output Channel 2	00h
	Bit 1: Parameterization error Channel 2	
	Bit 7 2: reserved	
11	Bit 0: Wire break at current output res. short circuit at voltage output Channel 3	00h
	Bit 1: Parameterization error Channel 3	
	Bit 7 2: reserved	

Technical data

Electrical Data	VIPA 2	234-1BD	050					
Number of in-/outputs	2/2	2/2						
Voltage supply	DC5V	via bac	kplane l	ous				
	DC24\	/ (20.4 .	28.8\	/)				
Current consumption	Backp	lane bu	s: 100	mA				
	DC 24	V extern	n: 100ı	mA				
Short circuit current	30mA							
I/O ranges	±10V,	1 5V	, 0 10)V, ±20r	mA, 0	20mA,	4 20	mA
Analog value calculation inputs		ation tin nannel)	ne/Resc	olution				
Parameterized velocity (Hz)	3.7	7.5	15	30	60	123	168	202
Basic calculation time (ms)	268	135	69	35,5	19	10	8	6,75
Additional calculation time	10	10	10	10	10	10	10	10
(executed once per cycle) (ms)								
Additional calculation time for wire break recognition (ms)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Resolution in Bit	16	16	16	16	15	14	12	10
Analogue value calculation outputs resolution (incl. overdrive region)				1				
±10V, ±20mA	11Bit -	⊦ sign						
4 20mA, 1 5V	10Bit	-						
0 10V, 0 20mA	11Bit							
Cycle time	2.5ms							
Settling time								
- Ohm resistive load	0.05m	s						
- Capacitive load	0.5ms							
- Inductive load	0.1ms							
Error limits	ſ	Veasuri	ng rang	e		Tole	erance	
- Voltage in-/output		±1	0V			±0	.2%	
		0	10V			±0	.4%	
		1	. 5V			±0	.6%	
- Current in-/output		±2()mA			±0	.3%	
		0 2	20mA			±0	.6%	
		4 2	20mA			±0	.8%	

Electrical Data	
Data for choosing an encoder	
- Voltage input	100kΩ
- Current input	50Ω
Data for choosing an actuator	Load resistor
- Voltage outputs	Ohm resistive load - min. $1k\Omega$
	Capacitive load - max. 1µF
- Current outputs	Ohm resistive load - max. 500Ω
	Capacitive load - max. 10mH
Diagnosis interrupt	parameterizable
Potential separation	500Vrms
	(field voltage – backplane bus)
Status monitor	via LEDs at the front side
Parameter data	
Input data	4byte (1 Word per channel)
Output data	4byte (1 Word per channel)
Parameter data	12byte
Diagnostic data	12byte
Measurements and Weight	
Measurements (WxHxD)	25.4x76x76mm
Weight	100g


234-1BD60 - AI 4/AO 2x12Bit - Multiin-/output

- Order data AI 4/AO 2x12Bit Multiin-/output VIPA 234-1BD60
- Description This module has 4 analog inputs and 2 analog outputs that may be configured individually. The module occupies a total of 8byte of input and 4byte of output data in the periphery area. Galvanic isolation between the channels on the module and the backplane bus is provided by means of DC/DC converters and optocouplers.

Properties 4inputs and 2 outputs with common ground •

- In-/Outputs with individually configurable functions
- Channel 0 to 2 suitable for encoder with input ranges of: voltage ±10V, 1 ... 5V, 0 ... 10V, ±4V, ±400mV current ±20mA, 4...20mA or 0 ... 20mA
- Channel 3 suitable for encoder with input ranges of: Pt100, Pt1000, NI100, NI1000 and resistant measuring 600Ω , 3000Ω
- Channel 4 to 5 Suitable for actuators with output ranges of: ±10V, 1 ... 5V, 0 ... 10V, ±20mA, 0 ... 20mA or 4 ... 20mA

Construction

- Label for the name of [1] the module
- [2] LED status indicator
- [3] Edge connector

4

5

6

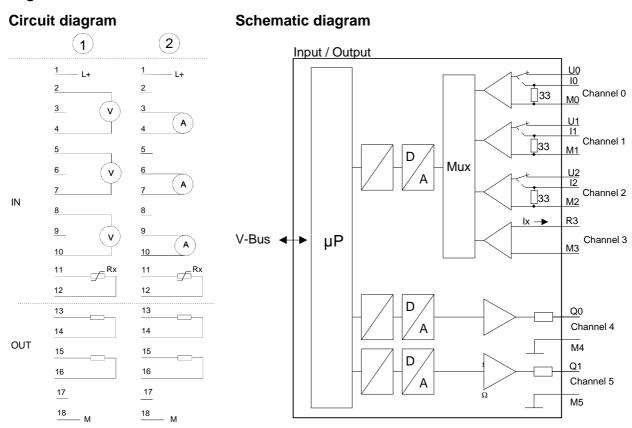
7

8

9

Status indicator **Pin assignment**

LED Description


SF Sum error LED (red)

> turned on as soon as an channel error is detected res. an entry in the diagnostic bytes happened

AI4//	AO2 x12Bit	
		1 2 3 4 5 6 7 8 9
		2
		3
		4
		5
		6
		7
		8
		9
		10
		11
		12
		13
F		14
IF		15
		16
IE		17
		18
3F		- 1
VIPA 2	34-1BD60	X 2 3 4

Pin	Assignment
1	DC 24V supply voltage
2	Voltage measuring Ch. 0
3	Current measuring Ch. 0

- Current measuring Ch. 0
- Ground Channel 0
- Voltage measuring Ch. 1
- Current measuring Ch. 1 **Ground Channel 1**
- Voltage measuring Ch. 2
- Current measuring Ch. 2
- Ground channel 2
- 10 Measuring Ch. 3 (Pt, Ni, R) 11
- 12 Ground 3
- Q0 output channel 4 13
- 14 M4 output channel 4
- 15 Q1 output channel 5
- 16 M5 output channel 5
- 17 reserved 18
 - Ground Supply voltage

Circuit and schematic diagram

Attention!

The following circumstances may cause damages at the analog module:

- The external supply of the input (current/voltage) <u>must not</u> be present as long as the backplane bus of the CPU is still without current supply!
- Parameterization and connection of the input must be congruent!
- You must not apply a voltage >15V to the input!

Data input/ data output range

Data input range:

During the measuring, the measuring values are stored in the data input area with the following assignment.:

Byte	Bit 7 Bit 0
0	High-Byte channel 0
1	Low-Byte channel 0
2	High-Byte channel 1
3	Low-Byte channel 1
4	High-Byte channel 2
5	Low-Byte channel 2
6	High-Byte channel 3
7	Low-Byte channel 3

Data output range:

For output of the data you set a value in the data output area.

Byte	Bit 7 Bit 0
0	High-Byte channel 4
1	Low-Byte channel 4
2	High-Byte channel 5
3	Low-Byte channel 5

Parameter data 16byte of parameter data are available for the configuration. These parameters are stored in non-volatile memory and are available after the unit has been powered off. By using the SFC 55 "WR_PARM" you may alter the parameterization in the module during runtime. The time needed until the new parameterization is valid can last up to 50ms. During this time, the measuring value output is 7FFFFh.

The following table shows the structure of the parameter data:

Parameter area:

Byte	Bit 7 Bit 0	Default
0	Wire break recognition channel 0	00h
	Bit 0: 0 = deactivated	
	1 = activated	
	Wire break recognition channel 1	
	Bit 1: 0 = deactivated	
	1 = activated	
	Wire break recognition channel 2 Bit 2: 0 = deactivated	
	1 = activated	
	Wire break recognition channel 3	
	Bit 3: 0 = deactivated	
	1 = activated	
	Bit 4, 5: reserved	
	Diagnostic interrupt	
	Bit 6: 0 = diagnostic interrupt inhibited	
	1 = diagnostic interrupt enabled	
	Bit 7: reserved	0.01
1	Bit 3 0: reserved	00h
	CPU-Stop reaction for channel 4 Bit 4: 0 = Set replacement value *)	
	1 = Store last value	
	CPU-Stop reaction for channel 5	
	Bit 5: $0 = \text{Set replacement value}^*$	
	1 = Store last value	
	Bit 6, 7: reserved	
2	Function-no. channel 0 (see table input ranges)	28h
3	Function-no. channel 1 (see table input ranges)	28h
4	Function-no. channel 2 (see table input ranges)	28h
5	Function-no. channel 3 (see table input ranges)	01h
6	Option-Byte channel 0 (see table next page)	00h
7	Option-Byte channel 1 (see table next page)	00h
8	Option-Byte channel 2 (see table next page)	00h
9	Option-Byte channel 3 (see table next page)	00h
10	Function-no. channel 4 (see table output ranges)	09h
11	Function-no. channel 5 (see table output ranges)	09h
12	High-Byte replacement value channel 4	00h
13	Low-Byte replacement value channel 4	00h
14	High-Byte replacement value channel 5	00h
15	Low-Byte replacement value channel 5	00h

*) If you want to get 0A res. 0V as output value at CPU-STOP, you have to set the following replacement values at current output (4...20mA) res. voltage output (1...5V): E500h for the S7 format from Siemens.

Parameter

Wire break recognition

Via the bits 0 and 3 of byte 0, the wire break recognition is activated for the input channels. The wire break recognition is only available for the current measuring range of 4...20mA and at (thermo) resistance measuring. A wire break is recognized when the current input during current measuring sinks under 1.18mA res. when the resistance at (thermo) resistance measuring reaches infinite. This causes an entry in the diagnosis area and is shown via the SF-LED.

If a diagnostic interrupt is activated, a diagnosis message is sent to the super-ordinated system.

Diagnostic interrupt

With the help of bit 6 of byte 0, you may release the diagnostic interrupt. In case of an error like e.g. wire break, the superordinated system receives *record 0* (4byte). For an extended diagnosis you may then call *record 1* (12byte). More detailed information is to find below under "Diagnostic data".

CPU-Stop reaction and replacement value

With bit 4 and 5 of byte 1 and byte 12 ... 15 you may set the reaction of the module at CPU-Stop for every output channel.

Via byte 12 ... 15 you predefine a replacement value for the output channel as soon as the CPU switches to Stop.

By setting bit 4 res. 5, the last output value remains in the output at CPU-Stop. A reset sets the replacement value.

Function-no.

Here you set the function-no. of your measuring res. output function for every channel. Please see the according table next page.

Meas. cycle

Here you may set the transducer velocity for every input channel. Please regard that a higher transducer velocity causes a lower resolution because of the lower integration time.

The data transfer format remains unchanged. Only the lower Bits (LSBs) are not longer relevant for the analog value.

Structure Meas. cycle Byte:

Byte	Bit 7 Bit 0	Resolution	Default
6 9	Bit 3 0: Velocity per channel		00h
	0000 15 conversions/s	16	
	0001 30 conversions/s	16	
	0010 60 conversions/s	15	
	0011 120 conversions/s	14	
	0100 170 conversions/s	12	
	0101 200 conversions/s	10	
	0110 3.7 conversions/s	16	
	0111 7.5 conversions/s	16	
	Bit 7 4: reserved		

Function-no. The assignment of a function-no. to a certain channel happens during parameterization. The function-no. 00h does not influence the function-no. stored in the permanent parameterization data.

By entering FFh you may deactivate the concerning channel.

The following tables list all functions that are supported by the depending channel.

You may find the connection type mentioned under "connection" at the "circuit diagram" above.

Note!

When exceeding the overdrive region, the value 7FFFh (32767) is thrown, at underrun of the underdrive region the value is 8000h (-32768).

Input range (channel 0 ... 2)

No.	Function	Measuring range / representation	Connection
00h	Does not affect permanentl	y stored configuration data.	
7Dh	Voltage 0 10V Siemens S7 format (two's complement)	-1.76 11.76V / 11.76V= End overdrive region (32511) 010V= nominal range (027648) -1.76V= End underdrive region (-4864)	(1)
7Ah	Voltage 1 5V Siemens S7 format (two's complement)	0.3 5.70V / 5.70V= End overdrive region (32511) 15V= nominal range (027648) 0.30V= End underdrive region (-4864)	(1)
28h	Voltage ±10V Siemens S7 format (two's complement)	±11.76V / 11.76V= End overdrive region (32511) -1010V= nominal range (-2764827648) -11.76V= End underdrive region (-32512)	(1)
29h	Voltage ±4V Siemens S7 format (two's complement)	±4.70V / 4.70V= End overdrive region (32511) -44V= nominal range (-2764827648) -4.70V= End underdrive region (-32512)	(1)
2Ah	Voltage ±400mV Siemens S7 format (two's complement)	±470mV / 470mV= End overdrive region (32511) -400400mV= nominal range (-2764827648) -470mV= End underdrive region (-32512)	(1)
7EH	Current 0 20mA Siemens S7 format (two's complement)	-3.51 23.51mA / 23.51mA = End overdrive region (32511) 020mA = nominal range (027648) -3.51mA = End underdrive region (-4864)	(2)
2Ch	Current ±20mA Siemens S7 format (two's complement)	±23.51mA / 23.51mA = End overdrive region (32511) -2020mA = nominal range (-2764827648) -23.51mA = End underdrive region (-32512)	(2)
2Dh	Current 420mA Siemens S7 format (two's complement)	1.185+22.81mA / 22.81mA = End overdrive region (32511) 420mA = nominal range (027648) 1.18mA = End underdrive region (-4864)	(2)
FFh	Channel not active (turned	011)	

No.	Function	Measuring range / representation	Conn.
00h	Does not affect permanently stor	red configuration data.	
01h	Pt100 in 2wire mode	-200 +850°C /	(1, 2)
		in units of 1/10°C, two's complement	
02h	Pt1000 in 2wire mode	-200 +500°C /	(1, 2)
		in units of 1/10°C, two's complement	
03h	NI100 in 2wire mode	-50 +250°C /	(1, 2)
		in units of 1/10°C, two's complement	
04h	NI1000 in 2wire mode	-50 +250°C /	(1, 2)
		in units of 1/10°C, two's complement	
06h	Resistance measurement	-1	(1, 2)
	600Ohm 2wire	600Ω = Limit value (32767)	
07h	Resistance measurement	-1	(1, 2)
	30000hm 2wire	$3000\Omega = \text{Limit value (32767)}$	-
FFh	Channel not active (turned off)		

Input range (channel 3)

Output range (channel 4, channel 5)

No.	Function	Output range	
00h	Does not affect permanently stored configuration data		
09h	Voltage ±10V Siemens S7 format (two's complement)	±11.76V 11.76V= End overdrive region (32511) -10V10V = nominal range (-2764827648) -11.76 = End underdrive region (-32512)	
0Ah	Voltage 15V Siemens S7 format (two's complement)	05.704V 5.704V = End overdrive region (32511) 15V = nominal range (027648) 0V = End underdrive region (-6912)	
0Dh	Voltage 010V Siemens S7 format (two's complement)	011.76V 11.76V= End overdrive region (32511) 010V = nominal range (027648) no underdrive region available	
0Bh	Current ±20mA Siemens S7 format (two's complement)	±23.52mA 23.52mA = End overdrive region (32511) -2020mA = nominal range (-2764827648) -23.52mA = End underdrive region (-32512)	
0Ch	Current 420mA Siemens S7 format (two's complement)	022.81mA 22.81mA = End overdrive region (32511) 420mA = nominal range (027648) 0mA = End underdrive region (-6912)	
0Eh	Current 020mA Siemens S7 format (two's complement)	023.52mA 23.52mA = End overdrive region (32511) 020mA = nominal range (027648) no underdrive region available	
FFh	Channel not active (turned off)		

Note!

When exceeding the predefined range, 0V res. 0A is shown as value!

Numeric notation	The analo	og values are represented in two's complement format.
in Siemens Byte Bit 7 Bit 0		Bit 7 Bit 0
S7 format	0	Bit 7 0: binary measured value
	1	Bit 6 0: binary measured value
		Bit 7: sign (0: positive / 1: negative)

|--|

1/ 100		
Voltage	Decimal	Hex
-10V	-27648	9400
-5V	-13824	CA00
0V	0	0
5V	13824	3600
10V	27648	6C00

0...10V

Voltage	Decimal	Hex
0V	0	0
5V	13824	3600
10V	27648	6C00

1...5V

Voltage	Decimal	Hex
1V	0	0
3V	13824	3600
5V	27648	6C00

+/-4V

Voltage	Decimal	Hex
-4V	-27648	9400
0V	0	0
4V	27648	6C00

+/-400mV

.,		
Voltage	Decimal	Hex
-400mV	-27648	9400
0V	0	0
400mV	27648	6C00

0....20mA

Current	Decimal	Hex
0mA	0	0
12mA	13824	3600
20mA	27648	6C00

4....20mA

Current	Decimal	Hex
4mA	0	0
12mA	13824	3600
20mA	27648	6C00

+/- 20mA

Current	Decimal	Hex
-20mA	-27648	9400
-10mA	-13824	CA00
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U-1}{4}, \quad U = Value \cdot \frac{4}{27648} + 1$ U: voltage, Value: decimal value

Formulas for the calculation:

 $Value = 27648 \cdot \frac{U}{4}$, $U = Value \cdot \frac{4}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{400}, \quad U = Value \cdot \frac{400}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, \quad I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value

Formulas for the calculation:

 $Value = 27648 \cdot \frac{I}{20}, \quad I = Value \cdot \frac{20}{27648}$ I: current, Value: decimal value **Diagnostic data** The diagnostic data uses 12byte and are stored in the record sets 0 and 1 of the system data area.

When you enable the diagnostic interrupt in byte 0 of the parameter area, modules will transfer *record set 0* to the superordinated system when an error is detected.

Record set 0 has a predefined content and a length of 4byte. The content of the record set may be read in plain text via the diagnostic window of the CPU.

For extended diagnosis during runtime, you may evaluate the 12byte wide *record set 1* via the SFCs 51 and 59.

Evaluate diagnosis At present diagnosis, the CPU interrupts the user application and branches into the OB 82. This OB gives you detailed diagnostic data via the SFCs 51 and 59 when programmed correctly.

After having processed the OB 82, the user application processing is continued. Until leaving the OB 82, the data remain consistent.

Record set 0 Byte 0 to 3:

Record set 0 (Byte 0 to 3):

Byte	Bit 7 Bit 0	Default
0	Bit 0: Module malfunction	00h
	Bit 1: reserved	
	Bit 2: External error	
	Bit 3: Channel error present	
	Bit 4: external supply voltage is missing	
	Bit 5, 6: reserved	
	Bit 7: Wrong parameters in the module	
1	Bit 3 0: Module class	15h
	0101 Analog module	
	Bit 4: Channel information present	
	Bit 7 5: reserved	
2	reserved	00h
3	reserved	00h

Record set 1

Byte 0 to 11:

The *record set 1* contains the 4byte of record set 0 and additional 8byte module specific diagnostic data.

The diagnostic bytes have the following assignment:

Record set 1 (Byte 0 to 11):

Byte	Bit 7 Bit 0	Default
03	Content record set 0 (see page before)	-
4	Bit 6 0: Channel type	74h
	70h: Digital input	
	71h: Analog input	
	72h: Digital output	
	73h: Analog output	
	74h: Analog in-/output	
	Bit 7: reserved	
5	Bit 7 0: Number of diagnostic bits of the module	04h
	per channel	
6	Bit 7 0: Number of identical channels of a	06h
	module	
7	Bit 0: Channel error Channel 0	00h
	Bit 1: Channel error Channel 1	
	Bit 2: Channel error Channel 2	
	Bit 3: Channel error Channel 3	
	Bit 4: Channel error Channel 4	
	Bit 5: Channel error Channel 5	
	Bit 6, 7: reserved	
8	Bit 0: Wire break Channel 0	00h
	Bit 1: Parameterization error Channel 0	
	Bit 2: Measuring range underflow Channel 0	
	Bit 3: Measuring range overflow Channel 0	
	Bit 4: Wire break Channel 1	
	Bit 5: Parameterization error Channel 1	
	Bit 6: Measuring range underflow Channel 1	
	Bit 7: Measuring range overflow Channel 1	
9	Bit 0: Wire break Channel 2	00h
	Bit 1: Parameterization error Channel 2	
	Bit 2: Measuring range underflow Channel 2	
	Bit 3: Measuring range overflow Channel 2	
	Bit 4: Wire break Channel 3	
	Bit 5: Parameterization error Channel 3	
	Bit 6: Measuring range underflow Channel 3	
	Bit 7: Measuring range overflow Channel 3	
10	Bit 0: Wire break at current output res. short circuit	00h
	at voltage output Channel 4	
	Bit 1: Parameterization error Channel 4	
	Bit 2, 3: reserved	
	Bit 4: Wire break at current output res. short circuit	
	at voltage output Channel 5	
	Bit 5: Parameterization error Channel 5	
	Bit 6, 7: reserved	0.01
11	reserved	00h

Technical Data

Electrical Data	VIPA 2	234-1BE	D60					
Number of Current-/Voltage input	3							
Number of resistance input	1							
Number of outputs	2							
Length of cable: shielded	200m							
Voltages, Currents, Potentials								
Supply voltage	DC 24\	/						
- reverse polarity protection	yes							
Constant current for resistance-type	1.25mA	4						
sensor								
Isolation								
- channels / backplane bus	yes							
- channel / power supply of the	-							
electronic	yes							
- between the channels	no							
Permitted potential difference								
- between the inputs (U _{CM})	DC4V							
- between the inputs and MINTERNAL	DC75V	/AC60V						
(U _{ISO})								
Isolation tested with	DC 500	V						
Current consumption								
- from the backplane bus	100mA							
- from the power supply L+	60mA ((no load)						
Power dissipation of the module	2W Ù	,						
Analog value calculation input	Conve	rsion tir	ne/Res	olution	(per cha	nnel)		
Measuring principle	Sigma-	Delta						
Parameterizable	Yes							
Conversion rate (Hz)	200	170	120	60	30	15	7.5	3.7
Integration time (ms)	5	6	8	17	33	67	133	270
Basic conversion time (ms)	7	8	10	19	35	69	135	272
Resolution (Bit) incl. overrange	10	12	14	15	16	16	16	16
Noise suppression for frequency f1 (Hz)	no					50 and	60Hz	
Basic execution time of the module, in	28	32	40	76	140	276	540	1088
ms (all channels enabled)							0.0	
Smoothing of the measured values	none	I						
Analog value calculation output								
channels								
Resolution (incl. overrange)								
±10V, ±20mA	11bit +	sian						
4 20mA, 1 5V	10bit							
0 10V, 0 20mA	11bit							
Conversion time (per channel)	1.5ms							
Settling time								
Settling time - impedance load	0.3ms							
0								

continue				
Suppression of interference, limits of	error input channels			
Noise suppression for f=n x (f1 ±1%)	(f1=interference frequency, n=	:1,2,)		
Common-mode interference	> 80dB			
$(U_{CM} < 5V)$				
Series-mode noise (peak value of noise	> 80dB			
< nominal value of input range				
Crosstalk between the inputs	> 50dB			
Operational limit (only valid to 120W/				
(in the entire temperature range, refe		Talananaa		
voltage input	Measuring range ±400mV, ±4V, ±10V	Tolerance ±0.3%		
voltage input	1 5V	±0.3% ±0.7%		
	0 10V	±0.7% ±0.4%		
current input	±20mA	±0.3%		
current input	0 20mA	±0.5%		
	4 20mA	±0.8%		
Resistors	0 600Ω, 03kΩ	±0.8%		
Resistance thermometer	Pt100, Pt1000	±0.4%		
	Ni100, Ni1000	±1.0%		
Basic error limit (only valid to 120W/s		1.070		
(during temperature is 25°C, referring				
	Measuring range	Tolerance		
Voltage input	400mV, ±4V, ±10V	±0.2%		
voltage input	1 5V	±0.2%		
	0 10V	±0.3%		
Current input	±20mA	±0.2%		
	0 20mA	±0.4%		
	4 20mA	±0.5%		
Resistors	0600Ω, 0 3kΩ	±0.2%		
Resistance thermometer	Pt100, Pt1000	±0.2%		
	Ni100, Ni1000	±0.5%		
Temperature error				
(with reference to the input range)		±0.005%/K		
measuring current		±0.015%/K		
Linearity error				
(with reference to the input range)		±0.02%		
Repeatability (in steady state at 25°C				
referred to the input range)		±0.05%		
Suppression of interference, limits of				
Crosstalk between the outputs > 40dB				
Operational limit (in the entire temperature range, referring to output range)				
	Measuring range			
Voltage output	±10V	$\frac{\pm 0.4\%^{1)}}{\pm 0.6\%^{1)}}$		
	0 10V	$\pm 0.6\%^{7}$ $\pm 0.8\%^{1)}$		
Current output	±20mA 0 20mA	$\pm 0.3\%^{7}$ $\pm 0.6\%^{2)}$		
	4 20mA	$\pm 0.8\%^{2}$		
	4 2011A	±0.070		

Basic error limit (during temperatur	e is 25°C, referring to output i	range)
	Measuring range	Tolerance
Voltage output	1 5V	$\pm 0.4\%^{1)}$
	0 10V	$\pm 0.3\%^{1)}$
	±10V	$\pm 0.2\%^{1)}$
Current output	±20mA	$\pm 0.2\%^{2)}$
·	0 20mA	$\pm 0.4\%^{2)}$
	4 20mA	$\pm 0.5\%^{2)}$
Temperature error		0.01%/K
(with reference to the output range)		
Linearity error	±	0.05%
(with reference to the output range)		
Repeatability (in steady state at 25°C	±	0.05%
referred to the output range)		
Output ripple;	±	0.05%
range 0 to 50kHz		
(referred to output range)		
States, Alarms, Diagnosis		
Diagnosis alarm	parameterizable	
Diagnosis functions		
- Sum error monitor	red LED (SF)	
- Diagnostic information readable	possible	
Substitute value can be applied	yes	
Data for choosing an encoder		
Voltage input		
±400mV	10MΩ	
±4V, ±10V, 1 5V, 0 10V	120kΩ	
Current input		
±20mA, 0 20mA, 4 20mA	33Ω (90 Ω starting with release 2	2)
Resistors		
0600Ω, 03kΩ	10MΩ	
Resistance thermometer		
Pt100, Pt1000, Ni100, Ni1000	10MΩ	
Maximum input voltage for voltage	25V	
input (destruction limit)		
Maximum input current for current	30mA	
input (destruction limit)		
Connection of the sensor		
For measuring voltage	yes	
For measuring current		
as 2wire transmitter	possible with external power su	pply
as 4wire transmitter	yes	
For measuring resistance		
with 2conductor connection	yes	
Characteristic linearization		
for RTD	Pt100, Pt1000, Ni100, Ni1000	
Unit for temperature measurement	O° D°	

Data for choosing an actuator	
Output ranges (rated values)	
Voltage	1 5V, 0 10V, ±10V
Current	4 20mA, 0 20mA, ±20mA
Load resistance	
(in nominal range of the output)	
At voltage outputs	min. 1kΩ
- capacitive load	max. 1μF
At current output	max. 500Ω
- Inductive load	max. 10mH
Voltage outputs	
Short-circuit protection	yes
Short-circuit current	max. 31mA
Current outputs	
No-load voltage	max. 13V
Destruction limit against	
voltages/currents applied from outside	
Voltage at outputs to M _{ANA}	max. 15V
Current	max. 30mA
Connection of actuators	
for voltage output	2conductor connection
for current output	2conductor connection
Parameter data	
Input data	8byte (1 word per channel)
Output data	4byte (1 word per channel)
Parameter data	16byte
Diagnostic data	12byte
Dimensions and weight	
Dimensions (WxHxD) in mm	25.4x76x88mm
Weight	80g

 $^{1)}$ The error limits are measured with a load of R=1G $\Omega.$ For voltage output the output impedance is 50 $\Omega.$

²⁾ The error limits are measured with a load of R=10 Ω .

Chapter 9 SM 238C - Combination module

Overview In this chapter follows the description of the combination module SM 238C that includes a digital in-/output module with counter function and an analog in-/output module. The combination module can only be used together with a CPU 21x or with the DP-V1 Profibus coupler (253-xDP01)!

Here the max. number of modules is limited to 2.

Contents	Торіс		Page
	Chapter 9	SM 238C - Combination module	9-1
	Overview		9-2
	In-/Output	part	
	Analog par	t	
	Analog par	t - Project engineering	
	Analog par	t - Alarm and diagnostic	
	Digital part		
	Digital part	- Counter - Fast introduction	
		- Counter - Project engineering	
	Digital part	- Counter - Functions	
		- Counter - Operating modes	
	Digital part	- Counter - Additional functions	
		- Counter - Alarm and diagnostic	
	Technical [Data	9-40

Overview

General

The combination module includes a digital in-/output module with counter function and an analog in-/output module.

The following components are integrated:

- Analog input: 3xU/I, 1xPT100x12Bit
- Analog output: AO 2x12Bit COM
- Digital input: 16(12)xDC24V with parameterizable counter functions
- Digital output:: 0(4)xDC24V 1A
- Counter: max. 3 counter with the operating modes: endless, single or periodic counting.

Security hints for deploying I/O channels!

Please regard that the voltage applied to an output channel must be \leq the voltage supply applied to L+.

Due to the parallel connection of in- and output channel, a set output channel may be supplied via an applied input signal. Thus, a set output remains active even at power-off of the voltage supply with the applied input signal.

Non-observance may cause module demolition.

ProjectThe combination module can only be used together with a CPU 21x or with
the DP-V1 Profibus coupler (253-xDP01)! Here the max. number of
modules is limited to 2.

The operation at a other bus coupler is not permitted.

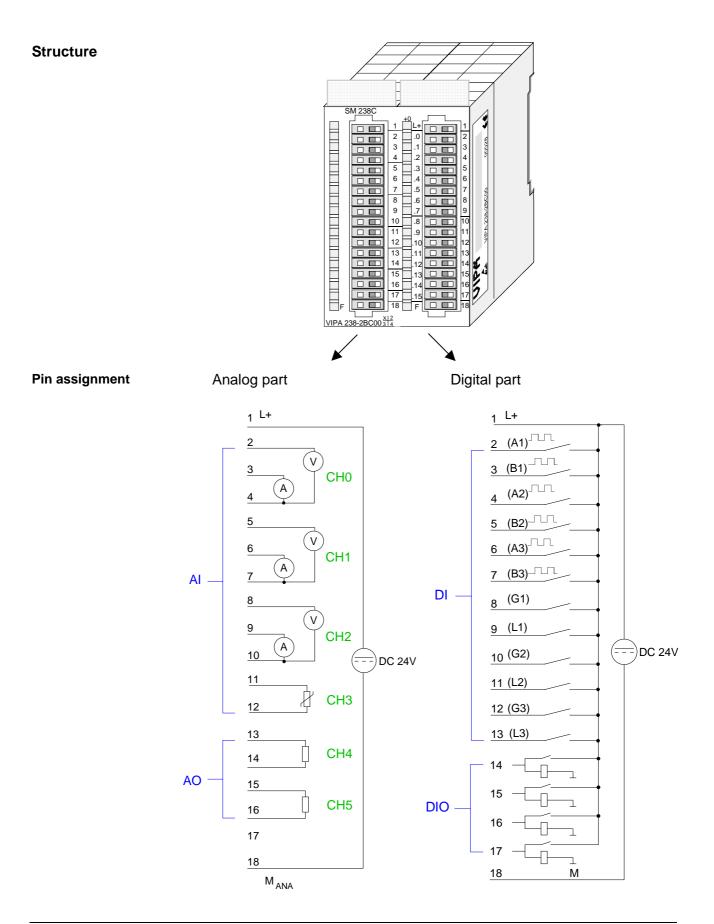
The necessary GSD files can be found at "service" on ftp.vipa.de.

The project engineering takes place in the Siemens SIMATIC manager. For this the import of the corresponding GSD file is required.

After installation of the GSD the combination module can be found at the hardware catalog at:

Additional Field devices > I/O > VIPA_System_200V >...

as 2 modules:


238-2BC00 (1/2) AI4/AO2*12Bit 238-2BC00 (2/2) Counter

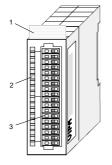
For the module has a digital and an analog part, you have to configure for each one component during the hardware configuration.

Counter The control of the counter happens via digital input channels. For the counter you may configure alarms that influence one digital output channel per counter.

Ordering data DI 16xDC24V / AI 4/AO 2x12Bit Combination module VIPA 238-2BC00

In-/Output part

Analog part


Properties

The analog part has 4 analog inputs and 2 analog outputs that may be configured individually. The module occupies a total of 8byte of input and 4byte of output data.

Galvanic isolation between the channels on the module and the backplane bus is provided by means of DC/DC converters and opto couplers.

- 4inputs and 2 outputs with common ground
- In-/Outputs with individually configurable functions
- Channel 0 to 2 suitable for encoder with input ranges of: voltage ±10V, 1 ... 5V, 0 ... 10V, ±4V, ±400mV current ±20mA, 4...20mA, 0 ... 20mA
- Channel 3 suitable for encoder with input ranges of: Pt100, Pt1000, NI100, NI1000 resistant measuring 600Ω , 3000Ω
- Channel 4 to 5 Suitable for actuators with output ranges of: ±10V, 1 ... 5V, 0 ... 10V, ±20mA, 0 ... 20mA or 4 ... 20mA

Construction

- [1] Label for the name of the module
- [2] LED status indicator
- [3] Edge connector

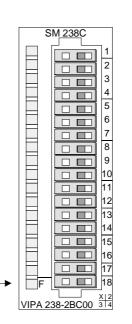
2

3

4

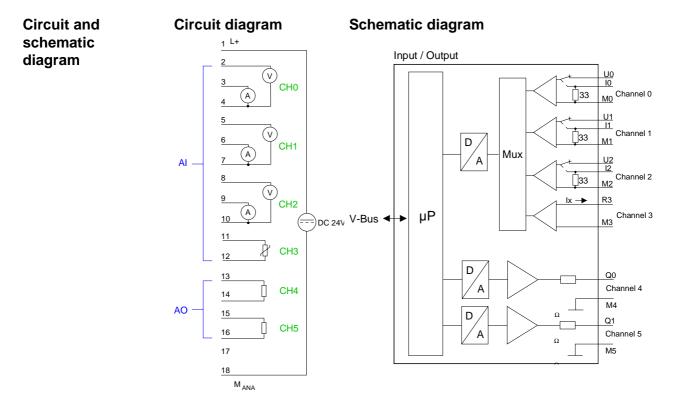
5

6


7

8

9


Status indicator **Pin assignment**

- LED Description
 - F Sum error LED (red) turned on as soon as an channel error is detected res. an entry in the diagnostic bytes happened

Pin Assignment

- DC 24V supply voltage 1
 - Voltage measuring Ch. 0
 - Current measuring Ch. 0
 - Ground Channel 0
 - Voltage measuring Ch. 1
 - Current measuring Ch. 1
 - Ground Channel 1
 - Voltage measuring Ch. 2
 - Current measuring Ch. 2
- 10 Ground channel 2 11
 - Measuring Ch. 3 (Pt, Ni, R)
- 12 Ground 3 13 Q0 output channel 4
- 14 M4 output channel 4
- 15 Q1 output channel 5
 - M5 output channel 5
- 16 18 Ground Supply voltage

Attention!

Temporarily not used inputs have to be connected with the concerning ground at activated channel. When deactivating unused channels by means of FFh, this is not required.

Numeric notation in Siemens S7 format The analog values are represented in two's complement format.

Depending on the parameterized transformation speed the lowest value bits of the measuring value are irrelevant. With increasing sampling rate, the resolution decreases.

The following table lists the resolution in dependence of the sampling rate.

		Analog value														
		High-Byte					Low-Byte									
Bit number	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Resolution	sign		Measuring value													
15 Bit + sign	sign	Rele	Relevant output value (at 3.7 30Hz)													
14 Bit + sign	sign	Rele	Relevant output value (at 60Hz) X*				Χ*									
13 Bit + sign	sign	Rele	Relevant output value (at 120Hz) X				Х									
11 Bit + sign	sign	Rele	Relevant output value (at 170Hz)XXXX					Х								
9 Bit + sign	sign	Rele	Relevant output value (at 200Hz)XXXXX				Х									

* The lowest value irrelevant bits of the output value are marked with "X".

Algebraic sign bit	Bit 15 serves as algebraic sign bit. Here is:
(sign)	Bit 15 = "0" \rightarrow positive value
	Bit $15 = "1" \rightarrow negative value$

Digital/Analog conversion

In the following all measuring ranges are listed that are supported by the analog part.

The here listed formulas allow you to transform an evaluated measuring value (digital value) to a value assigned to the measuring range and vice versa.

1/ 100		
Voltage	Decimal	Hex
-10V	-27648	9400
-5V	-13824	CA00
0V	0	0
5V	13824	3600
10V	27648	6C00

0...10V

Voltage	Decimal	Hex		
0V	0	0		
5V	13824	3600		
10V	27648	6C00		
101	21010	0000		

1...5V

Voltage	Decimal	Hex	
1V	0	0	
3V	13824	3600	
5V	27648	6C00	

+/-4V

Voltage	Decimal	Hex
-4V	-27648	9400
0V	0	0
4V	27648	6C00

+/-400mV

Voltage	Decimal	Hex
-400mV	-27648	9400
0V	0	0
400mV	27648	6C00

0....20mA

Current	Decimal	Hex
0mA	0	0
12mA	13824	3600
20mA	27648	6C00

4....20mA

Current	Decimal	Hex
4mA	0	0
12mA	13824	3600
20mA	27648	6C00

+/- 20mA

Current	Decimal	Hex
-20mA	-27648	9400
-10mA	-13824	CA00
0mA	0	0
10mA	13824	3600
20mA	27648	6C00

Formulas for the calculation:

 $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{10}$, $U = Value \cdot \frac{10}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U-1}{4}, \quad U = Value \cdot \frac{4}{27648} + 1$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{4}$, $U = Value \cdot \frac{4}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{U}{400}, \quad U = Value \cdot \frac{400}{27648}$ U: voltage, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, \quad I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I-4}{16}, I = Value \cdot \frac{16}{27648} + 4$ I: current, Value: decimal value

Formulas for the calculation: $Value = 27648 \cdot \frac{I}{20}$, $I = Value \cdot \frac{20}{27648}$ I: current, Value: decimal value

Analog part - Project engineering

Access to the analog part	the DD \/A Drofibure equaler (252 vDD04) The project engineering			
	238-2BC00 (2/2) Counter Please take care that you always configure both module parts in the			
	sequence shown above			
Data input/ data output range	following a	input 8bytes and for data output 4bytes are available with the assignment: <i>t range:</i> e measuring, the measuring values are stored in the data input		
	Byte	Bit 7 Bit 0		
	0	High-Byte channel 0		
	1	Low-Byte channel 0		
	2	High-Byte channel 1		
	3	Low-Byte channel 1		
	4	High-Byte channel 2		
	5	Low-Byte channel 2		
	6	High-Byte channel 3		
	7	Low-Byte channel 3		

Data output range:

For output of the data you set a value in the data output area.

Byte	Bit 7 Bit 0
0	High-Byte channel 4
1	Low-Byte channel 4
2	High-Byte channel 5
3	Low-Byte channel 5

Behavior at errors As soon as a measuring value exceeds the overdrive res. underdrive region, the following value is returned:

Measuring value > Overdrive region: 32767 (7FFFh)

Measuring value < Underdrive region: -32768 (8000h)

When exceeding the predefined range the analog output is set to 0V res. 0A!

Parameter data 16byte of parameter data are available for the configuration. These parameters are stored in non-volatile memory and are available after the unit has been powered off.

By using the SFC 55 "WR_PARM" you may alter the parameterization in the module during runtime. The time needed until the new parameterization is valid can last up to 50ms. During this time, the measuring value output is 7FFFFh.

The following table shows the structure of the parameter data:

Parameter area Record set 0

Byte	Bit 7 Bit 0	Default
0	Wire break recognition channel 0	00h
	Bit 0: 0 = deactivated	
	1 = activated	
	Wire break recognition channel 1	
	Bit 1: 0 = deactivated	
	1 = activated	
	Wire break recognition channel 2	
	Bit 2: 0 = deactivated	
	1 = activated	
	Wire break recognition channel 3	
	Bit 3: 0 = deactivated	
	1 = activated	
	Bit 4, 5: reserved	
	Diagnostic interrupt	
	Bit 6: 0 = diagnostic interrupt inhibited	
	1 = diagnostic interrupt enabled Bit 7: reserved	
1	Bit 3 0: reserved	00h
I	CPU-Stop reaction for channel 4	0011
	Bit 4: $0 = \text{Set replacement value}^*$	
	1 = Store last value	
	CPU-Stop reaction for channel 5	
	Bit 5: $0 = \text{Set replacement value}^*$	
	1 = Store last value	
	Bit 7 6: reserved	
2	Function-no. channel 0 (see table input ranges)	28h
3	Function-no. channel 1 (see table input ranges)	28h
4	Function-no. channel 2 (see table input ranges)	28h
5	Function-no. channel 3 (see table input ranges)	01h
6	Option-Byte channel 0 (see table next page)	00h
7	Option-Byte channel 1 (see table next page)	00h
8	Option-Byte channel 2 (see table next page)	00h
9	Option-Byte channel 3 (see table next page)	00h
10	Function-no. channel 4 (see table output ranges)	09h
11	Function-no. channel 5 (see table output ranges)	09h
12	High-Byte replacement value channel 4	00h
13	Low-Byte replacement value channel 4	00h
14	High-Byte replacement value channel 5	00h
15	Low-Byte replacement value channel 5	00h
	very byte replacement value enamere	

^{*)} If you want to get 0A res. 0V as output value at CPU-STOP, you have to set the following replacement values at current output (4...20mA) res. voltage output (1...5V): E500h for the S7-format from Siemens.

Parameters

Wire break recognition

Via the bits 0 and 3 of byte 0, the wire break recognition is activated for the input channels. The wire break recognition is only available for the current measuring range of 4...20mA and at (thermo) resistance measuring. A wire break is recognized when the current input during current measuring sinks under 1.18mA res. when the resistance at (thermo) resistance measuring reaches infinite. This causes an entry in the diagnostic area and is shown via the SF-LED.

If a diagnostic interrupt is activated, a diagnostic message is sent to the superordinated system.

Diagnostic interrupt

With the help of bit 6 of byte 0, you may release the diagnostic alarm. In case of an error like e.g. wire break, the superordinated system receives *record 0* (4byte). For an extended diagnostic you may then call *record 1* (12byte). More detailed information is to find below under "Diagnostic data".

CPU-Stop reaction and replacement value

With bit 4 and 5 of byte 1 and byte 12 ... 15 you may set the reaction of the module at CPU-Stop for every output channel.

Via byte 12 ... 15 you predefine a replacement value for the output channel as soon as the CPU switches to Stop.

By setting bit 4 res. 5, the last output value remains in the output at CPU-Stop. A reset sets the replacement value.

Function No.

Here you set the function no. of your measuring res. output function for every channel. Please see the according table above.

Meas. cycle

Here you may set the transducer velocity for every input channel. Please regard that a higher transducer velocity causes a lower resolution because of the lower integration time.

The data transfer format remains unchanged. Only the lower Bits (LSBs) are not longer relevant for the analog value.

Structure Meas.	. cycle Byte:
-----------------	---------------

Ву	/te	Bit 7 Bit 0	Resolution	Default
6.	9	Bit 3 0: Velocity per channel		00h
		0000 15 conversions/s	16	
		0001 30 conversions/s	16	
		0010 60 conversions/s	15	
		0011 120 conversions/s	14	
		0100 170 conversions/s	12	
		0101 200 conversions/s	10	
		0110 3.7 conversions/s	16	
		0111 7.5 conversions/s	16	
		Bit 7 4: reserved		

Function-no.The assignment of a function no. to a certain channel happens during
parameterization. The function no. 00h does not influence the function no.
stored in the permanent parameterization data.

By entering FFh you may deactivate the concerning channel.

The following tables list all functions that are supported by the depending channel.

You may find the corresponding connection type at the "circuit diagram" above.

Note!

When exceeding the overdrive region, the value 7FFFh (32767) is thrown, at underrun of the underdrive region the value is 8000h (-32768).

Input range (channel 0 ... 2)

No.	Function	Measuring range / representation	
00h	Does not affect permanently stored configuration data.		
7Dh	Voltage 0 10V	-1.76 11.76V /	
	Siemens S7-format	11.76V= End overdrive region (32511)	
		010V= nominal range (027648)	
		-1.76V= End underdrive region (-4864)	
		two's complement	
7Ah	Voltage 1 5V	0.3 5.70V /	
	Siemens S7-format	5.70V= End overdrive region (32511)	
		15V= nominal range (027648)	
		0.30V= End underdrive region (-4804)	
		two's complement	
28h	Voltage ±10V	±11.76V /	
	Siemens S7-format	11.76V= End overdrive region (32511)	
		-1010V= nominal range (-2764827648)	
		-11.76V= End underdrive region (-32512)	
		two's complement	
29h	Voltage ±4V	±4.70V /	
	Siemens S7-format	4.70V= End overdrive region (32511)	
		-44V= nominal range (-2764827648)	
		-4.70V= End underdrive region (-32512)	
		two's complement	
2Ah	Voltage ±400mV	±470mV /	
	Siemens S7-format	470mV= End overdrive region (32511)	
		-400400mV= nominal range (-2764827648)	
		-470mV= End underdrive region (-32512)	
		two's complement	

continue function-no.	input range	(channel 02)
-----------------------	-------------	--------------

7EH	Current 0 20mA	-3.51 23.51mA /
	Siemens S7-format	23.51mA = End overdrive region (32511)
		020mA = nominal range (-2764827648)
		-3.51mA = End underdrive region (-4864)
		two's complement
2Ch	Current ±20mA	±23.51mA /
	Siemens S7-format	23.51mA = End overdrive region (32511)
		-2020mA = nominal range (-2764827648)
		-23.51mA = End underdrive region (-32512)
		two's complement
2Dh	Current 420mA	1.185+22.81mA /
	Siemens S7-format	22.81mA = End overdrive region (32511)
		420mA = nominal range (027648)
		1.18mA = End underdrive region (-4864)
		two's complement
FFh	Channel not active (turned off)	

Input range (channel 3)

No.	Function	Measuring range / representation
00h	Does not affect permanently stor	ed configuration data.
01h	Pt100 in 2wire mode	-200 +850°C /
		in units of 1/10°C, two's complement
02h	Pt1000 in 2wire mode	-200 +500°C /
		in units of 1/10°C, two's complement
03h	NI100 in 2wire mode	-50 +250°C /
		in units of 1/10°C, two's complement
04h	NI1000 in 2wire mode	-50 +250°C /
		in units of 1/10°C, two's complement
06h	Resistance measurement	-1
	600Ohm 2wire	600Ω = Limit value (32767)
07h	Resistance measurement	-1
	3000Ohm 2wire	3000Ω = Limit value (32767)
FFh	Channel not active (turned off)	

No.	Function	Output range	
00h	Does not affect permanently stored configuration data		
09h	Voltage ±10V	±11.76V	
	Siemens S7-format	11.76V= End overdrive region (32511)	
		-10V10V = nominal range (-2764827648)	
		-11.76 = End underdrive region (-32512)	
		two's complement	
0Ah	Voltage 15V	05.704V	
	Siemens S7-format	5.704V = End overdrive region (32511)	
		15V = nominal range (027648)	
		0V = End underdrive region (-6912)	
		two's complement	
0Dh	Voltage 010V	011.76V	
	Siemens S7-format	11.76V= End overdrive region (32511)	
		010V = nominal range (027648)	
		no underdrive region available	
0Bh	Current ±20mA	±23.52mA	
	Siemens S7-format	23.52mA = End overdrive region (32511)	
		-2020mA = nominal range (-2764827648)	
		-23.52mA = End underdrive region (-32512)	
		two's complement	
0Ch	Current 420mA	022.81mA	
	Siemens S7-format	22.81mA = End overdrive region (32511)	
		420mA = nominal range (027648)	
		0mA = End underdrive region (-6912)	
		two's complement	
0Eh	Current 020mA	023.52mA	
	Siemens S7-format	23.52mA = End overdrive region (32511)	
		020mA = nominal range (027648)	
		no underdrive region available	
FFh	Channel not active (turned off)		

Output range (Channel 4, Ch. 5)

Note!

When exceeding the predefined range, 0V res. 0A is shown as value!

Analog part - Alarm and diagnostic

Diagnostic functions	As soon as you've activated the diagnostic alarm release in the parameterization, the following events can release a diagnostic alarm:
	Wire break
	Parameterization error

- Measuring range overflow
- Measuring range underflow

At accumulated diagnostic the CPU interrupts the user application and branches to the OB82 for diagnostic (incoming). This OB allows you with an according programming to monitor detailed diagnostic information via the SFCs 51 and 59 and to react to it. After the execution of the OB82 the user application processing is continued. The diagnostic data is consistent until leaving the OB82.

After error correction automatically a diagnostic (going) occurs if the diagnostic alarm release is still active.

In the following the record sets for diagnostic (incoming) and diagnostic (going) are specified:

Record set 0	Record set 0 (Byte 0 to 3:)			
Diagnostic (incoming)	Byte	Bit 7 Bit 0	Default	
	0	Bit 0: Module malfunction	00h	
		Bit 1: reserved		
		Bit 2: External error		
		Bit 3: Channel error present		
		Bit 4: external supply voltage is missing		
		Bit 5,6: reserved		
		Bit 7: Wrong parameters in the module		
	1	Bit 3 0: Module class	15h	
		0101 Analog module		
		Bit 4: Channel information present		
		Bit 7 5: reserved		
	2	reserved	00h	
	3	reserved	00h	

Record set 0After error correction automatically a diagnostic (going)Diagnostic (going)diagnostic alarm release is still active.

Record set 0 (Byte 0 to 3:)

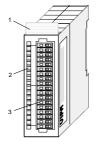
Byte	Bit 7 Bit 0	Default
0	00h (fix)	00h
1	Bit 3 0: Module class	15h
	0101 Analog module	
	Bit 4: Channel information present	
	Bit 7 5: reserved	
2	reserved	00h
3	reserved	00h

Record set 1 Addition diagnostic (incoming) The record set 1 contains the 4byte of record set 0 and additional 8byte module specific diagnostic data.

The diagnostic bytes have the following assignment:

Record set 1 (Byte 0 to 11):

Byte	Bit 7 Bit 0	Default
03	Content record set 0 (see page before)	-
4	Bit 6 0: Channel type	74h
	70h: Digital input	
	71h: Analog input	
	72h: Digital output	
	73h: Analog output	
	74h: Analog in-/output	
	Bit 7: reserved	
5	Number of diagnostic bits per channel	04h
6	Number of identical channels of a module	06h
7	Bit 0: Channel error Channel 0	00h
•	Bit 1: Channel error Channel 1	0011
	Bit 2: Channel error Channel 2	
	Bit 3: Channel error Channel 3	
	Bit 4: Channel error Channel 4	
	Bit 5: Channel error Channel 5	
	Bit 7 6: reserved	
8	Bit 0: Wire break Channel 0	00h
0	Bit 1: Parameterization error Channel 0	0011
	Bit 2: Measuring range underflow Channel 0	
	Bit 3: Measuring range overflow Channel 0	
	Bit 4: Wire break Channel 1	
	Bit 5: Parameterization error Channel 1	
	Bit 6: Measuring range underflow Channel 1	
	Bit 7: Measuring range overflow Channel 1	006
9	Bit 0: Wire break Channel 2 Bit 1: Decemptorization error Channel 2	00h
	Bit 1: Parameterization error Channel 2	
	Bit 2: Measuring range underflow Channel 2	
	Bit 3: Measuring range overflow Channel 2	
	Bit 4: Wire break Channel 3	
	Bit 5: Parameterization error Channel 3	
	Bit 6: Measuring range underflow Channel 3	
4.0	Bit 7: Measuring range overflow Channel 3	
10	Bit 0: Wire break at current output res. short circuit	00h
	at voltage output Channel 4	
	Bit 1: Parameterization error Channel 4	
	Bit 2,3: reserved	
	Bit 4: Wire break at current output res. short circuit	
	at voltage output Channel 5	
	Bit 5: Parameterization error Channel 5	
	Bit 6,7: reserved	
11	reserved	00h


Digital part

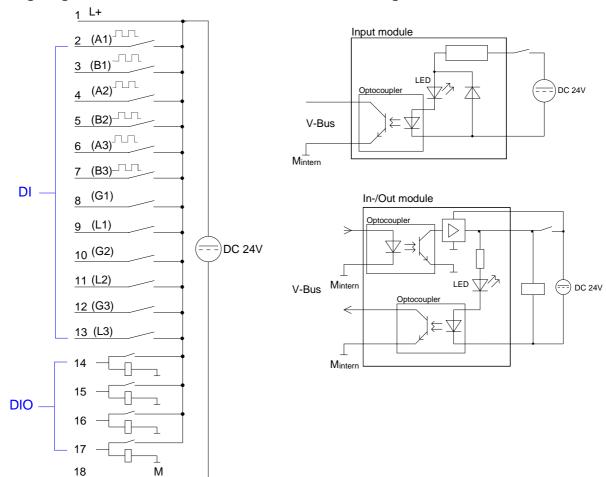
Properties

The digital input part accepts binary control signals from the process and provides an electrically isolated interface to the central bus system. It has 16 channels that indicate the respective status by means of LEDs. Additionally, the first 12 inputs may control 3 counter.

- 16 inputs, isolated from the backplane bus whereof 4 inputs are switchable as outputs
- 3 configurable counter (continuously, once and periodically) parameterizable via the first 12 inputs / 3 counter outputs
- Status indicator for each channel by means of an LED

Construction

- [1] Label for module description
- [2] LED status indicator
- [3] Edge connector


Status indicator Pin assignment

LED	Description		Pin	Assignment Counter activated	Counter deactivated
L+	LED (green)		1	Power supply DC 24V	
	Supply voltage		2	Input Counter (A1)	I.0 (byte 3.0)*
	available		3	Input Counter (B1)	I.1 (byte 3.1)
.015	LEDs (green)	.3 _ 5	4	Input Counter (A2)	I.2 (byte 7.0)
	I.0 up to I.15		5	Input Counter (B2)	I.3 (byte 7.1)
	when the input signal is "1" or	.6 .6 8 .7 9	6	Input Counter (A3)	I.4 (byte 11.0)
	the output is		7	Input Counter (B3)	I.5 (byte 11.1)
	active the		8	Input Counter Gate 1	I.6 (byte 12.0)
	respective	.12 .14	9	Input Counter Latch 1	I.7 (byte 12.4)
	LED is turned on	13 15 14 16	10	Input Counter Gate 2	I.8 (byte 12.1)
F	LED (red)	→ <u>.15</u> 17 → F □ □ 18	11	Input Counter Latch 2	I.9 (byte 12.5)
	Overload,		12	Input Counter Gate 3	I.10 (byte 12.2)
	overheat or		13	Input Counter Latch 3	I.11 (byte 12.6)
	short circuit		14	I/Q.12 Counter out 1 (byte 12.0) / Input	(byte 15.0)
	error		15	I/Q.13 Counter out 2 (byte 12.1) / Input	(byte 15.1)
			16	I/Q.14 Counter out 3 (byte 12.2) / Input	(byte 15.2)
			17	I/Q.15 Output (byte 12.3) / Input (byte	15.3)
			18	Ground	

*) The byte data refer to the offset of the base address of the module.

Wiring and schematic diagram

Wiring diagram

Schematic diagram

Security hints for deploying I/O channels!

Please regard that the voltage applied to an output channel must be \leq the voltage supply applied to L+.

Due to the parallel connection of in- and output channel, a set output channel may be supplied via an applied input signal. Thus, a set output remains active even at power-off of the voltage supply with the applied input signal.

Non-observance may cause module demolition.

Digital part - Counter - Fast introduction

Include GSD The combination module can only be used together with a CPU 21x or with the DP-V1 Profibus coupler (253-xDP01)! The project engineering takes place in the Siemens SIMATIC manager. For this the import of the corresponding GSD file is required which can be found at "service" on ftp.vipa.de.

After installation of the GSD file the combination module can be found at the hardware catalog at:

Additional Field devices > I/O > VIPA_System_200V > ...

as 2 modules:

238-2BC00 (1/2) AI4/AO2*12Bit

238-2BC00 (2/2) Counter

Please take care that you always configure both module parts in the sequence shown above

The combination module has 3 parameterizable integrated counter that are controlled via the input channels. During the counter process, the counter signal is registered and evaluated. Operating mode and additional functions are set via the parameterization.

Counter preset
and parame-
terizationBy placing both module parts within hardware configuration the counter
parameters can be set with the "238-2BC00 (2/2) Counter" properties.The digital part has to be provided with 60Byte parameter data. Here you
define among others:

- Alarm behavior
- Assignment I/O
- · Counter operating mode res. behavior
- Start value for load value, end value and comparison value register

You may alter the parameters during runtime by using the SFC 55, 56, 57 and 58, except of the parameters in record set 0. Here you have to send the wanted parameters to the counter by means of the user application using the according SFC and sending the data as record set.

Control counter by commands The controlling of the counters happens by the output image. Here the respective counter can be controlled by commands and the software gate can be (re-)set. After transmitting a command, the respective counter confirms the successful processing of the command by setting the corresponding handshake bit. To enable the respective counter to accept a new

handshake bit. To enable the respective counter to accept a new command, you have to transmit the command 00h to the counter. After writing the command 00h, the handshake bit assigned to this counter will be reset. The counter is released for a new command.

Counter start/stop The counter is controlled via the internal gate (I-gate). The I-gate is the result of logic operation of hardware- (HW) and Software-gate (SW), where the HW-gate evaluation may be deactivated via the parameterization.

HW-gate: Input at Gate_x-input at module

SW-gate: Open (activate):	Output image byte 12, set bit 4 6 depending on counter
Close (deactivate):	Output image byte 12, reset bit 4 6 depending on counter

The following states influence the gates:

SW-gate	HW-gate	influences I-gate
0	0	0
1	0	0
0	1	0
1	1	1
0	deactivated	0
1	deactivated	1

Access to counter values via input image	The module sends back a 16byte input image that is mapped into the memory area of the CPU. Here the current values and states of the counter can be found among others.
Counter inputs (connections)	For every counter, the following inputs are available: <i>Pulse/A</i> (A_x) Pulse input for counter signal res. line A of an encoder. Here you may connect encoders with 1-, 2- or 4-thread evaluation. <i>Direction/B</i> (B_x) Here you connect the direction signal res. line B of the encoder. You may invert the direction signal by parameterization. <i>Latch</i> (L_x) A positive edge at the digital input "Latch" stores the recent internal counter value. <i>HW Gate</i> (G_x) You start the counter via the digital input "Hardware gate".
Counter output	 Every counter has an assigned output channel. You may set the following behavior for the according output channel via the parameterization: No comparison: Output is not called Counter value ≥ comparison value: Output is set Counter value ≤ comparison value: Output is set Pulse at comparison value: Set output for a configurable pulse duration

Digital part - Counter - Project engineering

Overview By including the appropriate GSD into your hardware configurator the module is available via the hardware catalog.

Please take care that you always configure both module parts in the sequence:

238-2BC00 (1/2) Al4/AO2*12Bit

238-2BC00 (2/2) Counter

You may employ a max. of 2 combination modules at one system!

Parameterization The parameterization happens in the hardware configurator. Here 60Byte parameter data are transferred:

Byte	Record set	Description
0 2	0	Basic parameter (Alarm behavior, assignment I/O)
3 21	81h (129)	Counter parameter counter 1
22 40	82h (130)	Counter parameter counter 2
41 59	83h (131)	Counter parameter counter 3

By using SFC 55, 56 and 57 you may alter the parameterization in the module during runtime. On this occasion 60byte parameter data are stored at record set 0, 81h, 82h and 83h.

Basic parameter Record set 0 The basic parameters allow you to control the alarm behavior of the digital part and the assignment of the I/O channels that can be accessed by the according counter as output.

Byte	Description
0	Alarm generation
	0 = no
	1 = yes
1	Alarm selection
	00h = None
	01h = Diagnostics
	02h = Process alarm
	03h = Diagnostics- und Process alarm
2	Assignment of the in-/output channels.
	Here you define the assignment of the 4 I/O channels.
	If an I/O channel is used as input, you may output the status of the input via Byte 15 of
	the input image.
	For the operation as output, a detailed definition of the control is required in the
	parameter section of the according counter.
	Bit 0: $0 = \text{Input I.12}$
	1 = Output Q.12 / Counter output Q.12
	Bit 1: $0 = \text{Input I.13}$
	1 = Output Q.13 / Counter output Q.13 Bit 2: 0 = Input I.14
	1 = Output Q.14 / Counter output Q.14
	Bit 3: $0 = $ Input I.15
	1 = Output Q.15

Counter parameter	The parameters for the counter 1 (C1) to 3 (C3) consist of 3 identical
Record set 81h : C1 Record set 82h : C2	parameter groups with each a size of 19byte.
Record set 83h : C3	For every counter you may set a function and start data.

Byte	Description
0	Function
	00h = counting continuously
	01h = once without main counting direction
	02h = once with main counting direction up
	03h = once with main counting direction down
	04h = periodically without main counting direction
	05h = periodically with main counting direction up
	06h = periodically with main counting direction down
	07h = counter off
	If the counter is deactivated, the further parameters of this counter are ignored and the according I/O channel is set as "normal" output if you want to use this channel as output.
	At the main counting direction "up" the counter counts from the load value to the parameterized end value in positive direction and jumps then back again to the load value with the next following encoder pulse.
	At the main counting direction "down" the counter counts from the load value to the parameterized end value in negative direction and jumps then back again to the load value with the next following encoder pulse.
1	Signal evaluation
	Bit 10: 00b = Impulse/Direction (Impulse at A1 / Direction at B1)
	01b = Rotary encoder single (at A1 and B1)
	10b = Rotary encoder double (at A1 and B1)
	11b = Rotary encoder quadruple (at A1 and B1)
	Counter direction inverted
	Bit 7: 0 =Off (Count direction at B1 not inverted)
	1 = On (Count direction at B1 inverted)
2	Gate function (Behavior at interruption and gate restart)
	Bit 0: 0 = abort (counter process starts with load value)
	Bit 0: 1 = interrupt (counter process continues with counter value)
	HW gate (Hardware gate via input E.6)
	Bit 7: 0 = Off (Counter starts with set SW gate)
	1 = On (Counter only starts with set HW and SW gate)
3	Behavior of the output
	0 = no comparison (Output is not influenced by counter)
	1 = if counter value \geq comparison value, set output
	2 = if counter value \leq comparison value, set output
	3 = gives a pulse to the output as soon as the comparison value has been reached.The pulse duration is configured via byte 9.
-	continued

Byte	Description
4	Hysteresis
	0 = off
	1 = off
	2 255: The hysteresis serves the avoidance of many toggle processes of the output and the alarm, if the counter value is in the range of the comparison value.
5	Pulse duration (Pulse duration for the output)
5	0 = Counter value = comparison value (without delay)
	1 = 2ms
	2 = 4ms
	 255 = 510ms
	Only even values are permitted.
6	Alarm masking
Ű	Bit 0: 0 = deactivated
	1 = Alarm at opening the HW gate
	Bit 1: 0 = deactivated
	1 = Alarm at closing HW gate
	Bit 2: 0 = deactivated
	1 = Alarm at over-/underrun
	Bit 3: 0 = deactivated
	1 = Alarm at reaching comparison value
	Bit 4: 0 = deactivated
	1 = Alarm at counter pulse loss
7 10	Load value (Presetting a load value)
	Here you may load counter 1 with a value
1114	End value (Presetting a end value)
	The end value for counter 1 is not relevant if there is no main counting direction defined (forwards or backwards).
15 18	Compare value (Presetting a comparison value)
	The counter value is compared with the comparison value and depending on that the behavior of the according output of counter 1 is controlled.

Attention!

Please regard you have to store the record sets 81h, 82h and 83h within a data block starting with an **odd** address, otherwise you have shifts and incorrect double word accesses!

Data to digital partThe digital part gets its data from the CPU in form of a 16byte data block.(output image)The data block has the following structure:

Byte	Description
0 3	Value counter 1
4 7	Value counter 2
8 11	Value counter 3
12	Bit 0: Output Bit Q.12 / Release counter output 1 ¹⁾ Bit 1: Output Bit Q.13 / Release counter output 2 Bit 2: Output Bit Q.14 / Release counter output 3 Bit 3: Output Bit Q.15 Bit 4: Software Gate counter 1 Bit 5: Software Gate counter 2 Bit 6: Software Gate counter 3 Bit 7: not evaluated
13	Command for counter 1
14	Command for counter 2
15	Command for counter 3

The outputs may only be used as digital output if you parameterized them as "output" in the basic parameterization.

Communication via handshake bit After transmitting a command, the respective counter confirms the successful processing of the command by setting the corresponding handshake bit. To enable the respective counter to accept a new command, you have to transmit the command 00h to the counter. After writing the command 00h, the handshake bit assigned to this counter will be reset. The counter is released for a new command.

Command overview The following commands are available:

Command	Function	Description
00h	Reset command handshake	Release for a new
		command (must precede
		each command)
A0h	Set counter value	By means of these
A1h	Set load value	commands, a value set
A2h	Set comparison value	under "Value counter" is
A3h	Set end value	transferred to the
A4h	Set latch value	according register of a
A5h	Set hysteresis value	counter.
A6h	Set value of pulse duration	
A7h	reserved	
80h	Counter value	These commands cause
81h	Load value	the counter to send back a
82h	Comparison value	certain register value in
83h	End value	the input image of the
84h	Latch (display latch value)	corresponding counter.
85h	Hysteresis value	
86h	Pulse duration value	
87h	reserved	

Data from digital part (input image)

The module sends back a 16byte input image that maps into the memory area of the CPU. The structure of input data depends on counter activation:

Byte	Counter activated	Counter deactivated
03	Image counter 1	Byte 0 2: 0
		Byte 3: Bit 0: 1.0
		Bit 1: 1.1
47	Image counter 2	Byte 4 6: 0
	ő	Byte 7: Bit 0: 1.2
		Bit 1: 1.3
8	Image counter 3	Byte 8 10: 0
11	inage counter o	Byte 11: Bit 0: I.4
		Bit 1: 1.5
12	Gate/Latch	Dit 1. 1.0
12	Bit 0: Input I.6: Status input HW gate counter 1	
	Bit 1: Input I.8: Status input HW gate counter 1	
	Bit 2: Input I.10: Status input HW gate counter 3	
	Bit 3: 0 (fix)	
	Bit 4: Input I.7: Status input Latch 1	
	Bit 5: Input I.9: Status input Latch 2	
	Bit 6: Input I.11: Status input Latch 3	
10	Bit 7: 0 (fix)	
13	Internal gate / last counter direction	0
	If the counter operating mode is set to "off", these	e
	Bits are "0".	
	Bit 0: Status internal gate 1	
	Bit 1: Status internal gate 2	
	Bit 2: Status internal gate 3	
	Bit 3: 0 (fix)	
	Bit 4: 0= counter direction counter 1 down	
	1= counter direction counter 1 up	
	Bit 5: 0= counter direction counter 2 down	
	1= counter direction counter 2 up	
	Bit 6: 0= counter direction counter 3 down	
	1= counter direction counter 3 up	
14	Bit 7: 0 (fix)	0
14	Status of the counter outputs/command handshake	e 0
	Bit 0: Status internal counter output counter 1	
	Bit 1: Status internal counter output counter 2	
	Bit 2: Status internal counter output counter 3	
	Bit 3: 0 (fix)	
	Bit 4: Status command handshake counter 1	
	Bit 5: Status command handshake counter 2	
	Bit 6: Status command handshake counter 3	
	Bit 7: 0 (fix)	
15	Status inputs	
	If the channel is set as output, the according Bit is '	'0"
	Bit 0: Status input I.12	
	Bit 1: Status input I.13	
	Bit 2: Status input I.14	
	Bit 3: Status input I.15	
	Bit 7 4: 0 (fix)	

Digital part - Counter - Functions

Operating modes	 The combination module has 3 parameterizable integrated counter that are controlled via the input channels. During the counter process, the counter signal is registered and evaluated. Operating mode and additional functions are set via the parameterization. For the counter, the following operating modes are available: Count endless – Distance measuring with incremental encoder Count once – Count to a maximum limit Count periodic– Count with repeated counter process
	The operating modes "Count once" and "Count periodic" allow you to transfer the counter area as start res. end value via the parameterization. Each counter is parameterizable with additional functions like gate function, latch function, comparison, hysteresis a process alarm.
Counter inputs (connections)	For every counter, the following inputs are available: $Pulse/A (A_x)$ Pulse input for counter signal res. line A of an encoder. Here you may connect encoders with 1-, 2- or 4-thread evaluation. $Direction/B (B_x)$ Here you connect the direction signal res. line B of the encoder. You may invert the direction signal by parameterization. $Latch (L_x)$ A positive edge at the digital input "Latch" stores the recent internal counter value. $HW Gate (G_x)$ You start the counter via the digital input "Hardware gate".
Counter output	 Every counter has an assigned output channel. You may set the following behavior for the according output channel via the parameterization: No comparison: Output is not called Counter value ≥ comparison value: Output is set Counter value ≤ comparison value: Output is set Pulse at comparison value: Set output for a configurable pulse duration

Maximum counter frequency

At the designation of maximum counter frequency, two types of indication are distinguished:

Maximum pulse frequency

The maximum pulse frequency is the maximum frequency the adjacent signal may have, i.e. the maximum frequency at witch the pulses arrive at the module. At this module the maximum pulse frequency depends on the counter-signal-evaluation chosen.

Signal evaluation	Maximum pulse frequency
single	30kHz
duplicate	15kHz
quaduplicate	7.5kHz

Maximum counter frequency

The maximum counter frequency is the frequency at witch can be internally counted to the maximum.

At employment of all 3 counters, every counter may use a frequency of max. 30kHz. If you employ only 1 counter channel, the counter supports a max. frequency of 100kHz.

Main counting The parameterization allows you to define a main counting direction for direction every counter.

If you choose "none", the complete counting range is available:

	Valid value range
Lower count limit	- 2 147 483 648 (-2 ³¹)
Upper count limit	+ 2 147 483 647 (2 ³¹ -1)

Main counting direction forward

Upper restriction of the count range. The counter counts 0 res. load value in positive direction until the parameterized end value -1 and jumps then back to the load value with the next following encoder pulse.

Main counting direction backwards

Lower restriction of the count range. The counter counts from the parameterized start- res. load value in negative direction to the parameterized end value +1 and jumps then back to the start value with the next following encoder pulse.

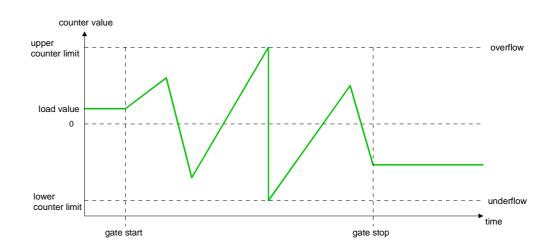
Abort -Abort count process interrupt The count process starts after closing and restart of the gate beginning with the load value. Interrupt count process

The count process continuous after closing and restart of the gate beginning with the last recent counter value.

Digital part - Counter - Operating modes

Overview

For the counter, the following operating modes are available separate configurable:


- Count endless Distance measuring with incremental encoder
- Count once Count to a maximum limit
- Count periodic- Count with repeated counter process

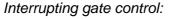
Continuously In this operating mode, the counter counts from 0 res. from the load value. When the counter counts forward and reaches the upper count limit and another counting pulse in positive direction arrives, it jumps to the lower count limit and counts from there on.

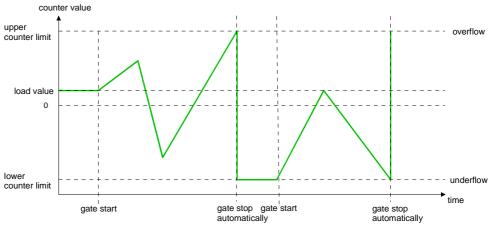
> When the counter counts backwards and reaches the lower count limit and another counting pulse in negative direction arrives, it jumps to the upper count limit and counts from there on.

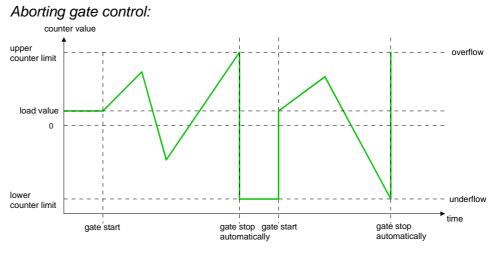
The count limits are set to the maximum count range.

	Valid value range
Lower count limit	- 2 147 483 648 (-2 ³¹)
Upper count limit	+ 2 147 483 647 (2 ³¹ -1)
Counter value	- 2 147 483 648 (-2 ³¹) to + 2 147 483 647 (2 ³¹ -1)
Load value	- 2 147 483 647 (- 2^{31} +1) to + 2 147 483 646 (2^{31} -2)

Note!

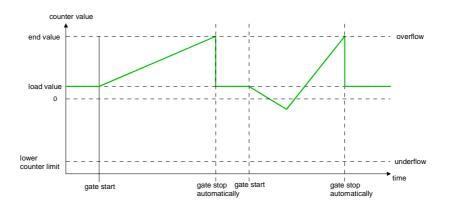

When counting continuously the parameter *main counting direction* is ignored!


Once


No main counting direction

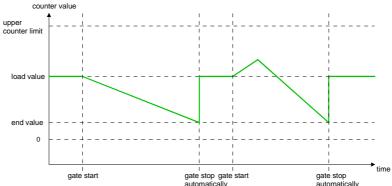
- The counter counts once starting with the load value.
- You may count forward and backwards.
- The count limits are set to the maximum count range.
- At over- or underrun at the count limits, the counter jumps to the according other count limit and counts from there on. The gate is automatically closed.
- To restart the count process, you must create a positive edge of the gate.
- At interrupting gate control, the count process continuous with the last recent counter value.
- At aborting gate control, the counter starts with the load value.

	Valid value range
Lower count limit	- 2 147 483 648 (-2 ³¹)
Upper count limit	+ 2 147 483 647 (2 ³¹ -1)
Counter value	- 2 147 483 648 (- 2^{31}) to + 2 147 483 647 (2^{31} -1)
Load value	- 2 147 483 647 (- 2^{31} +1) to + 2 147 483 646 (2^{31} -2)



Main counting direction forward

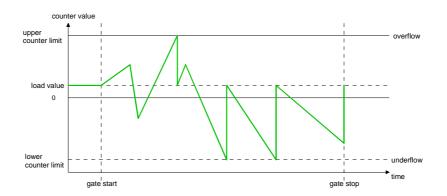
- The counter counts starting with the load value.
- When the counter reaches the end value -1 in positive direction, it jumps to the load value at the next positive count pulse and the gate is automatically closed.
- To restart the count process, you must create a positive edge of the gate. The counter starts with the load value.


	Valid value range
End value	- 2 147 483 646 ($-2^{31}+1$) to + 2 147 483 646 ($2^{31}-1$)
Lower count limit	- 2 147 483 648 (-2 ³¹)
Counter value	- 2 147 483 648 (-2 ³¹) to end value -1
Load value	- 2 147 483 648 (-2 ³¹) to end value -2

Main counting direction backwards

- The counter counts starting with the load value.
- When the counter reaches the end value in negative direction, it jumps to the load value at the next negative count pulse and the gate is automatically closed.
- To restart the count process, you must create a positive edge of the gate. The counter starts with the load value.

	Valid value range
End value	- 2 147 483 646 (-2 ³¹ +1) to + 2 147 483 646 (2 ³¹ -1)
Upper count limit	+2 147 483 646 (2 ³¹ -1)
Counter value	- 2 147 483 646 (-2 ³¹ +1) to + 2 147 483 646 (-2 ³¹ -1)
Load value	$-2 147 483 646 (-2^{31}+1) $ to $+ 2 147 483 646 (-2^{31}-1)$



Periodically

No main counting direction:

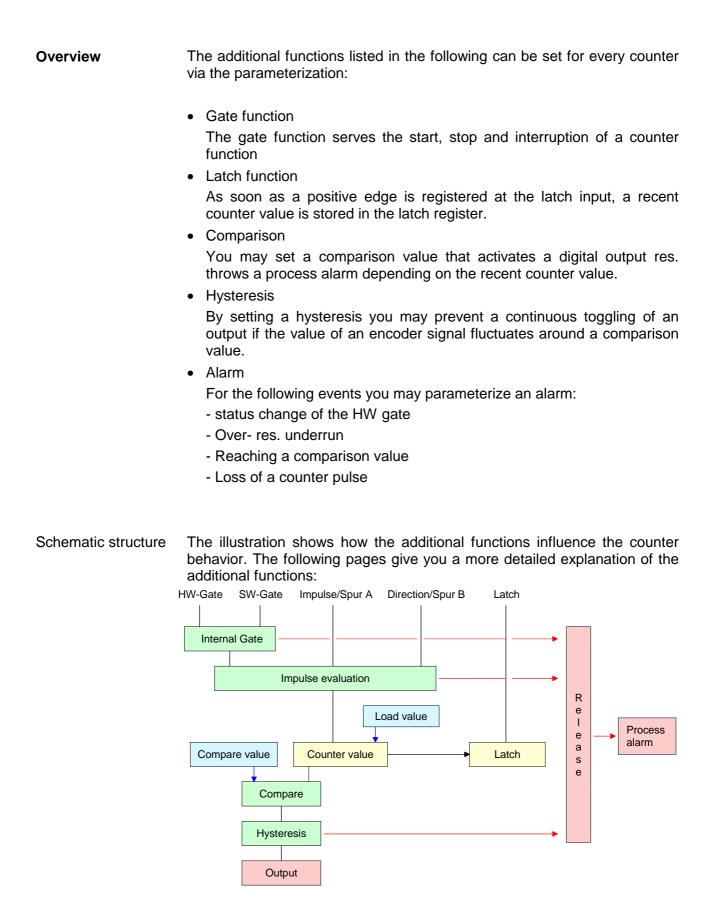
- The counter counts starting with the load value.
- At over- or underrun at the count limits, the counter jumps to the according other count limit and counts from there on.
- The count limits are set to the maximum count range.

	Valid value range
Lower count limit	- 2 147 483 648 (-2 ³¹)
Upper count limit	+ 2 147 483 647 (2 ³¹ -1)
Counter value	- 2 147 483 648 (-2 ³¹) to + 2 147 483 647 (2 ³¹ -1)
Load value	- 2 147 483 647 (- 2^{31} +1) to + 2 147 483 646 (2^{31} -2)

Main counting direction forward

- The counter counts starting with the load value.
- When the counter reaches the end value -1 in positive direction, it jumps to the load value at the next positive count pulse.

	Valid value range
Limit value	- 2 147 483 647 (-2 ³¹ +1) to + 2 147 483 647 (2 ³¹ -1)
Lower count limit	- 2 147 483 648 (-2 ³¹)
Counter value	- 2 147 483 648 (-2 ³¹) to end value -1
Load value	- 2 147 483 648 (-2 ³¹) to end value -2


Main counting direction backwards

- The counter counts starting with the load value.
- When the counter reaches the end value in negative direction, it jumps to the load value at the next negative count pulse.
- You may exceed the upper count limit.

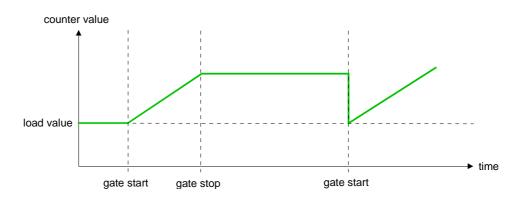
	Valid value range
Limit value	- 2 147 483 647 (-2 ³¹ +1) to + 2 147 483 647 (2 ³¹ -1)
Upper count limit	+2 147 483 647 (2 ³¹ -1)
Counter value	- 2 147 483 647 (-2 ³¹ +1) to +2 147 483 647 (2 ³¹ -1)
Load value	- 2 147 483 647 (-2 ³¹ +1) to +2 147 483 647 (2 ³¹ -1)

Digital part - Counter - Additional functions

Gate function The counter is controlled via the internal gate (I-gate). The I-gate is the result of logic operation of hardware- (HW) and Software-gate (SW), where the HW-gate evaluation may be deactivated via the parameterization.

HW-gate: Input at Gate_x-input at module

SW-gate: Open (activate):	Output image Byte 12, set Bit 4 6 depending on counter
Close (deactivate):	Output image Byte 12, reset Bit 4 6 depending on counter


The following states influence the gates:

SW-gate	HW-gate	influences I-gate
0	0	0
1	0	0
0	1	0
1	1	1
0	deactivated	0
1	deactivated	1


Gate function Abort and Interrupt

The parameterization defines if the gate interrupts or aborts the counter process.

• At *abort function* the counter starts counting with the load value after gate restart.

• At *interrupt function*, the counter starts counting with the last recent counter value after gate restart.

Latch functionAs soon as a positive edge at the "latch input" results from the counter
process, a recent counter value is stored in the according latch register.
The "input image" gives you access to the latch register.

Compare function The parameterization presets the behavior of the counter output:

- No comparison
- Counter value ≥ comparison value
- Counter value < comparison value
- Pulse at comparison value

No comparison

The output is set like a normal output.

Counter value ≥ comparison value

If the counter value is equal or higher than the comparison value, the output is set.

Counter value ≤ comparison value

If the counter value is smaller or equal than the comparison value, the output is set.

Pulse at comparison value

When the counter reaches the comparison value, the output is set active for the parameterized pulse duration.

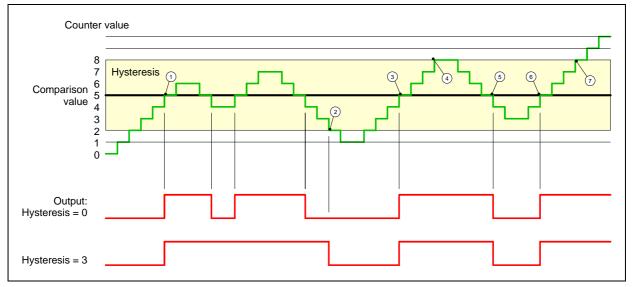
If you've set a main counter direction, the output is only set off the main counter direction at reaching the comparison value.

Pulse duration

The pulse duration tells for what time the output is set. It can be preset in steps of 2ms between 0 and 510ms. Please regard that the counter pulse times must be higher than the minimum toggle times of the digital output.

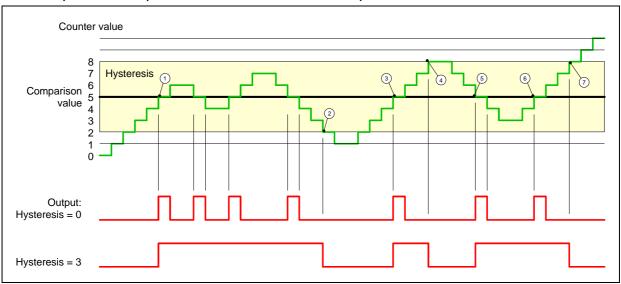
If the pulse duration = 0, the output is set active until the comparison condition is not longer fulfilled.

The pulse duration starts with the setting of the according digital output. The inaccuracy of the pulse duration is smaller than 1ms.

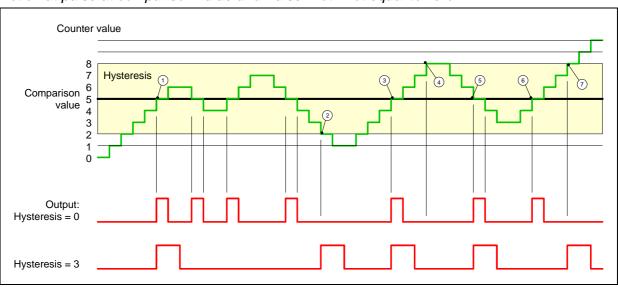

There is no finish triggering of the pulse duration if the comparison value is not met for a short time during a pulse output.

HysteresisThe hysteresis serves the avoidance of many toggle processes of the
output and the alarm, if the counter value is in the range of the comparison
value.You may set a range of 0 to 255. The settings 0 and 1 deactivate the
hysteresis. The hysteresis also influences the over- and underflow.
An activated hysteresis remains active after a change. The new hysteresis
range is taken over at the next reach of the comparison value.

The view below shows the action of the at hysteresis 0 and 3


In the following illustration the behavior of the output is represented with hysteresis 0 and hysteresis 3 for the appropriate conditions:

- (1) Counter value \geq Comparison value \rightarrow Output is set and hysteresis is activated
- 2 Leaving the hysteresis area \rightarrow Output is reset
- ③ Counter value \geq Comparison value \rightarrow Output is set and hysteresis is activated
- 4 Leaving the hysteresis area, output is just set as Counter value \geq Comparison value
- \bigcirc Counter value < Comparison value an hysteresis not activated \rightarrow Output is reset
- (6) Counter value \geq Comparison value \rightarrow Output is set and hysteresis is activated
- \bigcirc Leaving the hysteresis area, output is just set as Counter value \geq Comparison value


As reaching the comparison condition the hysteresis is activated. The comparison result is as static as the counter value leaves the parameterized hysteresis area. After leaving the hysteresis area only again with reaching comparison condition the hysteresis is activated.

Action at pulse at comparison value and Pulse width equal to zero

- (1) Counter value = Comparison value \rightarrow Output is set and hysteresis is activated
- 2 Leaving the hysteresis area \rightarrow Output is reset
- \bigcirc Counter value = Comparison value \rightarrow Output is set and hysteresis is activated
- ④ Counter value > Comparison value and leaving the hysteresis area so output is reset
- \bigcirc Counter value = Comparison value \rightarrow Output is set and hysteresis is activated
- (6) Counter value = Comparison value and hysteresis is just activated \rightarrow Output is static set
- \bigcirc Leaving the hysteresis area and Counter value > Comparison value \rightarrow Output is reset

As reaching the comparison condition the hysteresis is activated. The comparison result is as static as the counter value leaves the parameterized hysteresis area. After leaving the hysteresis area only again with reaching comparison condition the hysteresis is activated.

Action at pulse at comparison value and Pulse width not equal to zero

- ① Counter value = Comparison value → Hysteresis is switched active, a pulse of the specified length is output and the counting direction is stored
- ② Leaving the hysteresis area against the stored counter direction → A pulse of the specified length is output and the hysteresis deactivated
- ③ Counter value = Comparison value → Hysteresis is switched active, a pulse of the specified length is output and the counting direction is stored
- 4 Leaving Hysteresis area without changing counting direction \rightarrow Hysteresis is deactivated
- ⑤ Counter value = Comparison value → Hysteresis is switched active, a pulse of the specified length is output and the counting direction is stored
- (6) Counter value = Comparison value and hysteresis is activated \rightarrow no pulse
- \bigcirc Leaving the hysteresis area against the stored counting direction \rightarrow A pulse of the specified length is output and the hysteresis deactivated

As reaching the comparison condition the hysteresis is activated and a pulse of the specified length is output. As long as the counter value is within the hysteresis area no further pulse is output. With hysteresis activation the counting direction is stored by the PLC. If the counter value leaves the hysteresis area <u>against</u> the stored counting direction, an impulse of the of the specified length is output. When leaving the hysteresis area without change of counter direction there is no pulse output.

Digital part - Counter - Alarm and diagnostic

Overview

The parameterization allows you to define the following trigger for a process alarm:

- Status change of the HW gate
- Over- / Underflow
- Reaching a comparison value
- Loss of a counter pulse

You may globally activate a diagnostic alarm for all channels. A diagnostic alarm occurs as soon as at processing a process alarm a process alarm is initialized in OB40 for the same channel and the same event.

Process alarm A process alarm causes the call of OB40. Within the OB40 you may search the logical basic address of the module that threw the process alarm by using the *local word 6*.

The *local word 8* allows you to access the data that the module provides in case of an alarm. The *local word 8* has the following structure:

Byte	Bit 7 Bit 0
8	Bit 0: Channel 1 Comparison value reached
	Bit 1: Channel 1 Pulse lost
	Bit 2: Channel 2 HW gate open
	Bit 3: Channel 2 HW gate closed
	Bit 4: Channel 2 Overflow
	Bit 5: Channel 2 Comparison value reached
	Bit 6: Channel 2 Pulse lost
	Bit 7: reserved
9	Bit 0: Channel 0 HW gate open
	Bit 1: Channel 0 HW gate closed
	Bit 2: Channel 0 Overflow
	Bit 3: Channel 0 Comparison value reached
	Bit 4: Channel 0 Pulse lost
	Bit 5: Channel 1 HW gate open
	Bit 6: Channel 1 HW gate closed
	Bit 7: Channel 1 Overflow

Release diagnostic	During a process alarm is processed by the PLC in OB40 a diagnostic alarm can be released (if activated) by the same event at the same channel.
alarm	This interrupts the current process alarm execution in OB40 and branches to OB82 for processing the diagnostic alarm (incoming). If during the diagnostic alarm execution further events at other channels occur that may also initialize a process res. diagnostic alarm, these are temporarily stored.
	After finishing the current diagnostic alarm execution, the sum diagnostic message "process alarm lost" informs the CPU that in the meantime other process alarms has occurred.

Diagnostic alarm As soon as you've activated the diagnostic alarm a diagnostic alarm occurs during the processing a process alarm in OB40 for the same channel and the same event.

At accumulated diagnostic the CPU interrupts the user application and branches to the OB82 for diagnostic (incoming). This OB allows you with an according programming to monitor detailed diagnostic information via the SFCs 51 and 59 and to react to it.

After the execution of the OB82 the user application processing is continued. The diagnostic data is consistent until leaving the OB82.

After error correction automatically a diagnostic (going) occurs if the diagnostic alarm release is still active.

In the following the record sets for diagnostic (incoming) and diagnostic (going) are specified:

Record set 0	
Diagnostic (incoming)	

Record set 0	(Byte 0 to 3	3):
--------------	--------------	-----

Byte	Bit 7 Bit 0	Default		
0	Bit 0: Module malfunction	00h		
	Bit 1: internal error			
	Bit 2: reserved			
	Bit 3: channel error present			
	Bit 7 4: reserved			
1	Bit 3 0: Module class	18h		
	1000: Function module			
	Bit 4: Channel information present			
	Bit 7 5: reserved			
2	00h (fix)	00h		
3	Bit 5 0: reserved	00h		
	Bit 6: process alarm lost			
	Bit 7: reserved			

Record set 0 Diagnostic (going)

After error correction automatically a diagnostic (going) occurs if the diagnostic alarm release is still active.

Record set 0 (Byte 0 to 3:)

Byte	Bit 7 Bit 0	Default
0	00h (fix)	00h
1	Bit 3 0: Module class	18h
	1000: Function module	
	Bit 4: Channel information present	
	Bit 7 5: reserved	
2	00h (fix)	00h
3	00h (fix)	00h

Record set 1 Extended diagnostic (incoming)

Byte 0 to 11:

The record set 1 contains the 4byte of the record set 0 and additionally 8Byte of module specific diagnostic data.

Record set 1	(Byte 0 to	11):
--------------	------------	------

Byte	Bit 7 Bit 0	Default
0 3	Content record set 0 (see page before)	-
4	Bit 6 0: Channel type	76h
	76h: Counter	
	Bit 7: reserved	
5	Number of diagnostic bits per channel	08h
6	Number of similar channels (Counter)	03h
7	Bit 0: Channel error channel 0	00h
	Bit 1: Channel error channel 1	
	Bit 2: Channel error channel 2	
	Bit 7 3: reserved	
8	Error screen channel 0	00h
	Bit 0: HW gate open	
	Bit 1: HW gate closed	
	Bit 2: Overflow	
	Bit 3: Comparison value reached	
	Bit 4: Pulse lost	
	Bit 7 5: reserved	
9	Error screen channel 1	00h
	Bit 0: HW gate open	
	Bit 1: HW gate closed	
	Bit 2: Overflow	
	Bit 3: Comparison value reached	
	Bit 4: Pulse lost	
4.0	Bit 7 5: reserved	0.01
10	Error screen channel 2	00h
	Bit 0: HW gate open	
	Bit 1: HW gate closed	
	Bit 2: Overflow	
	Bit 3: Comparison value reached	
	Bit 4: Pulse lost	
4.4	Bit 7 5: reserved	005
11	reserved	00h

Technical Data

General

Dimensions and weight	238-2BC00
Current consumption via back plane bus	280mA
Dimensions (WxHxD) in mm	50.8x76x88mm
Weight	100g

Analog In-/Output

Analog III /Output								
Electrical Data	VIPA 2	VIPA 238-2BC00 (1/2) AI4/AO2*12Bit						
Number of Current-/Voltage input	3	3						
Number of resistance input	1							
Number of outputs	2							
Length of cable: shielded	200m							
Voltages, Currents, Potentials								
Supply voltage	DC 24	/ (20.4 .	28.8V)				
- reverse polarity protection	yes							
Constant current for resistance-type	1.25m/	4						
sensor								
Isolation								
- channels / backplane bus	yes							
 channel / power supply of the 	yes							
electronic								
 between the channels 	no							
Permitted potential difference								
 between the inputs (U_{CM}) 	DC 4V							
- between the inputs and M _{INTERNAL}	DC 75	//AC 60	V					
(U _{ISO})								
Isolation tested with	DC 500)V						
Current consumption		,						
- from the power supply L+		(no load)					
Power dissipation of the module	2W		-					
Analog value calculation input			me/Res	olution	(per cha	annel)		
Measuring principle	Sigma-	Delta						
Parameterizable	Yes	-						
Conversion rate (Hz)	200	170	120	60	30	15	7.5	3.7
Integration time (ms)	5	6	8	17	33	67	133	270
Basic conversion time (ms)	7	8	10	19	35	69	135	272
Resolution (Bit) incl. overrange	10	12	14	15	16	16	16	16
Noise suppression for frequency f1 (Hz)	no						d 60Hz	
Basic execution time of the module, in ms (all channels enabled)	28	32	40	76	140	276	540	1088
Smoothing of the measured values	none	•		•		•	•	•
Analog value calculation output								
channels								
Resolution (incl. overrange)								
±10V, ±20mA	11bit +	sign						
4 20mA, 1 5V	10bit							
0 10V, 0 20mA	11bit							
Conversion time (per channel)	1.5ms							
Settling time								
<u> </u>	0.3ms							
capacitive load								
inductive load	0.5ms							
impedance load capacitive load	0.3ms 1.0ms 0.5ms							

continue		
Suppression of interference, limits of	error input channels	
Noise suppression for f=n x (f1 ±1%)	(f1=interference frequency, n=	=1,2,)
Common-mode interference	> 80dB	
(U _{CM} < 5V)		
Series-mode noise (peak value of noise	> 80dB	
< nominal value of input range		
Crosstalk between the inputs	> 50dB	
Operational limit (only valid to 120W/	′s)	
(in the entire temperature range, refe	erring to input range)	
	Measuring range	Tolerance
voltage input	±400mV, ±4V, ±10V	±0.3%
	1 5V	±0.7%
	0 10V	±0.4%
current input	±20mA	±0.3%
	0 20mA	±0.6%
	4 20mA	±0.8%
Resistors	0 600Ω, 03kΩ	±0.4%
Resistance thermometer	Pt100, Pt1000	±0.4%
	Ni100, Ni1000	±1.0%
Basic error limit (only valid to 120W/s	6)	
(during temperature is 25°C, referring	to input range)	
	Measuring range	Tolerance
Voltage input	400mV, ±4V, ±10V	±0.2%
	1 5V	±0.5%
	0 10V	±0.3%
Current input	±20mA	±0.2%
· · · ·	0 20mA	±0.4%
	4 20mA	±0.5%
Resistors	0600Ω, 0 3kΩ	±0.2%
Resistance thermometer	Pt100, Pt1000	±0.2%
	Ni100, Ni1000	±0.5%
Temperature error		
(with reference to the input range)		±0.005%/K
measuring current		±0.015%/K
Linearity error		
(with reference to the input range)		±0.02%
Repeatability (in steady state at 25°C		
referred to the input range)		±0.05%
		±0.0376
Suppression of interference, limits of		•
Suppression of interference, limits of Crosstalk between the outputs	> 4	0dB
Suppression of interference, limits of	> 4	0dB
Suppression of interference, limits of Crosstalk between the outputs	> 4	0dB t range) Tolerance
Suppression of interference, limits of Crosstalk between the outputs	> 4 rature range, referring to output	0dB t range) Tolerance ±0.4% ¹⁾
Suppression of interference, limits of Crosstalk between the outputs Operational limit (in the entire temper	> 4 rature range, referring to outpu Measuring range	0dB t range)
Suppression of interference, limits of Crosstalk between the outputs Operational limit (in the entire temper	> 4 rature range, referring to outpu Measuring range ±10V	0dB t range) <u>±0.4%¹¹</u> ±0.6% ¹¹ ±0.8% ¹¹
Suppression of interference, limits of Crosstalk between the outputs Operational limit (in the entire temper	> 4 rature range, referring to outpu Measuring range ±10V 0 10V 1 5V ±20mA	0dB t range) $\pm 0.4\%^{1}$ $\pm 0.6\%^{1}$ $\pm 0.8\%^{1}$ $\pm 0.3\%^{2}$
Suppression of interference, limits of Crosstalk between the outputs Operational limit (in the entire temper Voltage output	> 4 rature range, referring to outpu Measuring range ±10V 0 10V 1 5V	0dB t range) <u>±0.4%¹¹</u> ±0.6% ¹¹ ±0.8% ¹¹

... continue

Basic error limit (during temperatur	e is 25°C, referring to output	range)
	Measuring range	Tolerance
Voltage output	1 5V	$\pm 0.4\%^{1)}$
0	0 10V	$\pm 0.3\%^{1)}$
	±10V	$\pm 0.2\%^{1)}$
Current output	±20mA	$\pm 0.2\%^{2)}$
	0 20mA	$\pm 0.4\%^{2)}$
	4 20mA	$\pm 0.5\%^{2)}$
Temperature error		0.01%/K
(with reference to the output range)		
Linearity error	<u>+</u>	-0.05%
(with reference to the output range)	_	
Repeatability (in steady state at 25°C	±	-0.05%
referred to the output range)		
Output ripple;	<u>+</u>	-0.05%
range 0 to 50kHz		
(referred to output range)		
States, Alarms, Diagnostic		
Diagnostic alarm	parameterizable	
Diagnostic functions		
- Sum error monitor	red LED (SF)	
- Diagnostic information readable	possible	
Substitute value can be applied	yes	
Data for choosing an encoder		
Voltage input		
±400mV	10ΜΩ	
±4V, ±10V, 1 5V, 0 10V	120kΩ	
Current input		
±20mA, 0 20mA, 4 20mA	33Ω (90 Ω starting with release 3)	
Resistors		-
0600Ω, 03kΩ	10MΩ	
Resistance thermometer		
Pt100, Pt1000, Ni100, Ni1000	10MΩ	
Maximum input voltage for voltage	25V	
input (destruction limit)		
Maximum input current for current	30mA	
input (destruction limit)		
Connection of the sensor		
For measuring voltage	yes	
For measuring current		
as 2wire transmitter	possible with external power su	pply
as 4wire transmitter	yes	
For measuring resistance		
with 2conductor connection	yes	
Characteristic linearization		
for RTD	Pt100, Pt1000, Ni100, Ni1000	

... continue

Data for abagaing an actuator	
Data for choosing an actuator	
Output ranges (rated values)	
Voltage	±10V, 1 5V, 0 10V
Current	±20mA, 0 20mA, 4 20mA
Load resistance	
(in nominal range of the output)	
At voltage outputs	min. 1kΩ
- capacitive load	max. 1μF
At current output	max. 500Ω
- Inductive load	max. 10mH
Voltage outputs	
Short-circuit protection	yes
Short-circuit current	max. 31mA
Current outputs	
No-load voltage	max. 13V
Destruction limit against	
voltages/currents applied from outside	
Voltage at outputs to M _{ANA}	max. 15V
Current	max. 30mA
Connection of actuators	
for voltage output	2conductor connection
for current output	2conductor connection
Parameter data	
Input data	8byte (1 word per channel)
Output data	4byte (1 word per channel)
Parameter data	16byte
Diagnostic data	12byte
1) The ensure limits are reconciliated with a local of D 40	20 Ear voltage output the output impedance is 500

¹⁾ The error limits are measured with a load of R=1G Ω . For voltage output the output impedance is 50 Ω .

 $^{2)}$ The error limits are measured with a load of R=10 $\!\Omega.$

Digital Input

Elektrical Data	VIPA 238-2BC00 (2/2) Counter
Number of inputs	16
Counter	3 (2 inputs each A, B)
Nominal input voltage	DC 24V (20.4 28.8V)
Signal voltage "0"	0 5V
Signal voltage "1"	15 28.8V
Input filter time delay	3ms
Input filter pulse input	100µs
Maximum counter frequency	30kHz
Input current	typ. 7mA
Supply voltage	5V via backplane bus
Isolation	500Veff (field voltage - backplane bus)
Status monitor	via LEDs at the front side
Parameter data	
Input data	16byte
Output data	16byte
Parameter data	60byte
Diagnostic data	12byte

Appendix

A Index

Α

Alarm input	3-8, 3-10
Analog in-/output modules.	
234-1BD50	
Diagnostics	
Function-no.	
Parameter	
234-1BD60	
Diagnostics	
Function-no.	
Parameter	
connecting actuators	
connecting sensors	
Runtime	
Diagnostics	
Parameter	
Security notes	
System overview	
Analog input modules	
231-1BD30	
Function-no	
Parameter	
231-1BD40	
Function-no	
Parameter	
231-1BD52	6-16
Diagnostics	
Function-no.	
Parameter	6-21
231-1BD53	
Diagnostics	
Function-no	
Parameter	6-30
231-1BD60	6-38
231-1BD70	
231-1BF00	
Diagnostics	
Function-no.	
Parameter	
231-1FD00	
Diagnostics	6-62
Function-no.	
Parameter	
Process alarm	
connecting sensors	6-3

Runtime	
Diagnostics	6-3
Parameter	6-3
System overview	6-2
Analog output modules	7-1
232-1BD30	7-7
Function-no	7-9
Parameter	7-9
232-1BD40	7-12
Function-no	7-14
Parameter	7-14
232-1BD51	7-17
Diagnostics	7-19
Function-no	7-20
Parameter	7-19
connecting actuators	7-3
Resolution	
Runtime	
Diagnostics	7-3
Parameter	
System overview	
Value representation	

С

Combination module SM238C .	0_1
Analog part	9-4
Alarm	9-13
conversion	9-6
Diagnostic interrupt	9-9
Diagnostics	9-13
Function-no	9-10
Meas. cycle	9-9
Numeric notation	9-5
Parameter	9-8
Pin assignment	9-4
Project engineering	9-7
Replacement value	9-9
Resolution	9-5
Wire break	9-9
Digital part	9-15
Counter	9-17
abort	9-25
additional functions	9-31
Alarm	
Commands	
Compare functions	
•	
continuously	9-20

Diagnostics Fast introduction Functions Gate functions Hysteresis Input image interrupt Latch function main counting direction max frequency	9-17 9-24 9-32 9-34 9-23 9-25 9-33 9-25 9-25
once	9-27
Operatimg modes	
Output image Parameter	
periodically	
Pin assignment	
Pulse duration	
Pin assignment	
Overview	9-2
Pin assignment	9-3
Technical data	9-40
Counter3-38	, 9-17

D

Digital in-/output modules5-1
223-1BF005-3
223-2BL10 5-5
Security hints5-2, 9-2, 9-16
System overview5-2
Digital input modules3-1
221-1BF003-4
221-1BF103-6
221-1BF203-8
221-1BF213-10
221-1BF303-12
221-1BF403-14
221-1BF503-16
221-1BH003-28
221-1BH103-30
221-1BH203-32
Counter 3-34
Functions 3-38
Deployment 3-36
Frequency measurement 3-39
Period measurement3-40
221-1BH303-42
221-1BH503-44
221-1BH513-46
221-1FD003-18
221-1FF203-20
221-1FF30 3-22
221-1FF40 3-24
221-1FF50 3-26
221-2BL10 3-48
System overview3-2

Digital output modules	4-1
222-1BF00	4-4
222-1BF10	4-6
222-1BF20	4-8
222-1BF30	4-10
222-1BF50	4-12
222-1BH00	4-14
222-1BH10	4-16
222-1BH20	4-18
222-1BH30	4-20
222-1BH50	4-22
222-1BH51	4-24
222-1DB00	4-28
Diagnostics	4-33
Parameter	4-30
222-1FD10	4-45
222-1FF00	4-43
222-1HD10	4-39
222-1HD20	4-41
222-1HF00	4-37
222-2BL10	
System overview	4-2

S

S5 format from Siemens 6-4, 7-5
S7 format from Siemens 6-5, 7-6
Safety Information 1-2
System 200V
Assembly2-1, 2-5
dimensions2-10
Basics1-1
Bus connector2-2
Centralized system 1-4
Components 1-4
Decentralized system 1-4
Disturbances
EMC 2-12
Basic rules 2-13
Environmental conditions 1-5
Installation guidelines 2-12
Overview
Peripheral modules 1-4
Profile rail2-2
Project engineering 1-4
Reliability 1-5
Removal
Screening of cables2-14
Wiring
U
UB4x3-29, 3-45, 4-15