
__
Subject to changes for the purposes of technical progress.

Manual

CP 486

Order No.: HB73e
Rev. 00/14

VIPA GmbH CP486 ⋅ 00/14

The statements of this manual are subject to changes and without guarantee. Changes
of contents can result at each time without preliminary announcement. Hardware and
software described in this manual is underlying the conditions of a general or specific
licence agreement (single user licence) and may only be used or copied in agreement
with the conditions of this licence agreement. Violation obligates to compensation.

© Copyright 2000 VIPA, Gesellschaft für Visualisierung und Prozeßautomatisierung
mbH,
Ohmstaße 4, D-91074 Herzogenaurach,
Tel.: +49 (91 32) 744-0
Fax.: +49 (91 32) 744-144
EMail: info@vipa.de
http://www.vipa.de

Hotline: +49 (91 32) 744-114

All rights reserved

VIPA� is a registered trademark of VIPA Gesellschaft für

Visualisierung und Prozeßautomatisierung mbH
MS-DOS� is a registered trademark of Microsoft Corp.
QUADTEL� is a registered trademark of Quadtel Corp.
CENTRONICS� is a registered trademark of Centronics Inc.
SIMATIC� is a registered trademark of Siemens AG.
STEP�5 is a registered trademark of Siemens AG.

Contents

CP486 ⋅ 00/14 VIPA GmbH 1

Contents

Page
1. Introduction 7

1.1 General 7
1.2 Application Area 8
1.3 Structure and Operation 8
1.4 Block Diagram of CP486 9
1.5 Special Components 10

2. Hardware 12
2.1 Structure of Modules 12
2.1.1 Structure of the Base Module 12
2.1.2 Structure of CP486S Module 14
2.1.3 Structure of CP486M Module 16
2.1.4 Structure of CP486ML Module 18
2.1.5 Structure of CP486L Module 20
2.1.6 Structure of CP486XL Module 22
2.1.7 Diagram of DIP Switches, Jumpers and Plug Connectors 24
2.2 Setting of DIP Switches 26
2.3 Configuration of 24V Power Supply 28
2.4 Installation of Chip Silicon Disk 30
2.5 Installation of Memory Card Silicon Disk 32
2.6 Installation of an Additional Silicon Disk Board 32
2.7 Numeric Processor Installation (FPU) 32
2.8 Interface Installation for VGA Flat Display 33
2.9 Setting of AT Additional Boards 33
2.10 Slots for CP486 in the PC 34

3. Assignment of Sockets and Plugs 37
3.1 15-pin SubD-Socket for Connecting the Monitor 37
3.2 9-pin SubD-Plug with V24 Interface (COM1 and COM3) 38
3.3 9-pin SubD-Plug with 20mA Interface (COM2) 39
3.4 9-pin SubD-Plug with RS422/485 Interface (COM4) 40
3.4.1 Operation as RS422 Interface 40
3.4.2 Operation as RS485 Interface 40
3.5 5/8-pin DIN Socket for Keyboard 42
3.6 25-pin SubD-Socket with Centronics Interface (LPT1) 43
3.7 2-pin Plugin Socket for external 24V Supply 44
3.8 15-pin SubD-Socket with VIPA Diagnostic Interface 44
3.9 Two-Part Clip Connector with AT Bus 45
3.10 PLC Base Plug (48-pin Male Connectors) 47
3.10.1 Base Plug X1 47
3.10.2 Base Plug X2 47

Contents

2 VIPA GmbH CP486 ⋅ 00/14

3.11 Memory Card Plug (Panasonic Memory Card) 48
3.12 Slot for Interface Modules 49
3.13 30/34-pin Pin Header for Floppy Disk Drive (X13) 50
3.14 50-pin Socket (X12) with TFI Interface for Hard Disk 51
3.15 50-pin Socket (X11) with AT Bus Signals for Special Use 52
3.16 26-pin Pin Header (X27) with Centronics Interface (LPT 2) 53
3.17 20-pin Pin Header (X22) for Flat Display Connection 54
3.18 16/24-pin Pin Header (X21) for Front Display and Keyboard 55
3.19 2-pin Pin Header (X4) for Speaker Connection 56
3.20 Fuses for External Current Consumers 56

4. BIOS Description and System Programming 57
4.1 System Structure 57
4.2 BIOS-SETUP 58

4.2.1 VIPA-BIOS-SETUP 58
4.2.2 QUADTEL-BIOS Selection Menue 60
4.2.3 QUADTEL-BIOS-Setup 61
4.2.4 Extended BIOS-Features 62
4.2.5 AT ROM Diagnostics 63
4.3 System Register 64
4.3.1 CP Status Register 64
4.3.2 PLC Status Register 64
4.3.3 Control Register 65
4.3.4 Watchdog 66
4.3.5 Interrupt Management 67
4.3.6 CMOS-RAM Status Byte 69
4.3.7 ROM-SETUP 70
4.3.8 Bank Interface 71
4.3.8.1 Operating Modes of Bank Interface 71
4.3.8.2 Bank Interface Register 72
4.3.8.3 Configuration Example: Standard CP Bank Operation (8 Banks with 1KB)75
4.3.8.4 Configuration Example: Bank Operation (4 Banks with each 64Byte) 76
4.3.8.5 Configuration Example: Bank Operation via Highest Bank Address 77
4.3.8.6 Configuration Example: Linear Operation 78
4.4 Address Assignment, Interrupts and DMA Channels 79
4.4.1 Memory Address Assignment 79
4.4.2 I/O Address Assignment 80
4.4.3 Interrupt Assignment 81
4.4.4 Assignment of DMA Channels 82

Contents

CP486 ⋅ 00/14 VIPA GmbH 3

5. Utility Software for MS-DOS 83
5.1 MS-DOS Utilities for Silicon Disk Operation 84
5.1.1 Silicon Disk Driver 84
5.1.2 Formatting Program for SRAM-DISK 87
5.1.3 Silicon Disk Generator 88
5.1.4 Silicondisk-Loader 89
5.1.5 Examples for Applying the Silicon Disk 91
5.1.5.1 Example for Generating a SRAM-Disk 91
5.1.5.2 Example for Generating a FLASH-PROM-Silicon Disk 92
5.1.5.3 Example for Generating a Program Memory with EPROMs 94
5.1.5.4 Example for Generating a ROM-Silicon Disk with FLASH-PROMs

by Means of the MS-DOS-RAM-Disk 96
5.2 VGA Configuration Program 99
5.3 CPLINK Program for Computer Link 100
5.4 Program for Visualizing the PLC Process Image 101
5.5 EMS Driver 102
5.6 System Test Program 102

6. Linkage with PLC 103
6.1 General Description 103
6.2 Installation of Bank Software for Linking PLC and CP486 104
6.2.1 PLC Side: Handling Modules 104
6.2.2 CP486: MS-DOS Driver Program 106
6.2.3 Different Data Representation in Memory 108
6.3 PLC Jobs for CP486 (Functions for Bank 0 and 1) 109
6.3.1 Overview 109
6.3.2 Parameterization of PLC Handling Modules 113
6.3.2.1 Handling Module SEND (FB3, Relative Bank Number: 1) 113
6.3.2.2 Handling Module CONTROL (FB4, Rel. Bank Number: 0/1) 115
6.3.2.3 Handling Module FETCH (FB5, Relative Bank Number: 0) 117
6.3.2.4 Handling Module RECEIVE (FB6, Rel. Bank Number: 0) 119
6.3.2.5 Parameterization of File Accesses via Handles 122
6.3.2.6 File Names 123
6.3.3 Funtion Description 124
6.3.3.1 Disk Reset 124
6.3.3.2 Select Disk 124
6.3.3.3 Get Disk 125
6.3.3.4 Create Directory 126
6.3.3.5 Delete Directory 126
6.3.3.6 Set Current Directory 127
6.3.3.7 Get Current Directory 128
6.3.3.8 Create File/Rewrite Existing File 129
6.3.3.9 Create New File 130

Contents

4 VIPA GmbH CP486 ⋅ 00/14

6.3.3.10 Open File 131
6.3.3.11 Commit File 131
6.3.3.12 Close File 132
6.3.3.13 Delete File 132
6.3.3.14 Rename File 133
6.3.3.15 Set File Pointer 134
6.3.3.16 Get File Pointer 134
6.3.3.17 Read File or Device 135
6.3.3.18 Write File or Device 136
6.3.3.19 Get Date 137
6.3.3.20 Get Time 137
6.3.3.21 Program Execute 138
6.3.3.22 Get MS-DOS Version 139
6.3.3.23 Get Detailed Error Information 140
6.3.3.24 General Interrupt 143
6.3.4 Demo Program: Get Time of CP486 from PLC 144
6.4 CP486 Jobs for PLC (Functions for Bank 2, 3 and 7) 145
6.4.1 Overview 145
6.4.2 Driver Functions via Software Interrupt 146
6.4.2.1 CP Status Call 146
6.4.2.2 Read a Single Element from the PC 147
6.4.2.3 Read a Block from the PC 148
6.4.2.4 Write a Variable to the PC 149
6.4.2.5 Write a Block to the PC 150
6.4.2.6 Read Job Status 151
6.4.2.7 Abort All Jobs of a Bank 153
6.4.2.8 Read Status of Process Image 154
6.4.2.9 Read Area of Process Image 155
6.4.2.10 Error Numbers of CP for Banks 2, 3 and 7 156
6.4.3 Interface for Turbo-Pascal (from Version 4.0) 157
6.4.3.1 Function CP Status Call 157
6.4.3.2 Read a Single Element from the PC 158
6.4.3.3 Read a Block from the PC 159
6.4.3.4 Write a Single Element to the PC 160
6.4.3.5 Write a Block into the PC 161
6.4.3.6 Read Job Status 162
6.4.3.7 Abort All Jobs of a Bank 163
6.4.3.8 Read Status of Process Image 164
6.4.3.9 Read Area of Process Image 164
6.4.3.10 Constants 165

Contents

CP486 ⋅ 00/14 VIPA GmbH 5

6.4.4 Interface to Turbo-C (2.0 and C++ from 1.0), Microsoft-C 6.0 170
6.4.4.1 Function CP Status Call 170
6.4.4.2 Read a Single Element from the PC 171
6.4.4.3 Read a Block from the PC 172
6.4.4.4 Write a Single Element into the PC 173
6.4.4.5 Write a Block into the PC 174
6.4.4.6 Read Job Status 175
6.4.4.7 Abort All Jobs of a Bank 176
6.4.4.8 Read Status of Process Image 176
6.4.4.9 Read Area of Process Image 176
6.4.4.10 Constants 177
6.4.5 Storage of Process Images to Bank 7 182
6.5 Access on the CP386COM from WINDOWS 183

7. Technical Data 184

7.1 Base Module 184

7.2 Option Hard Disk 186

7.3 Option Floppy Disk Drive 186

Contents

6 VIPA GmbH CP486 ⋅ 00/14

Introduction

CP 486 ⋅ 00/14 VIPA GmbH 7

1. Introduction

1.1 General

This manual describes the handling with CP486 modules CP4-BG61, -BG62, -BG63, -BG64,

and BG65 of VIPA GmbH started with revision level 1. The revision level 1 comprises the

SYSTEMBIOS versions V18 and the VGA-BIOS V13. The CP486 modules are applicable to all

automation systems (PLC-115U ...PLC-155U). The CPU486SLC has an internal cache of 1 KB. At

the whole, the CP486 with 25Mhz runs faster by an factor 2.5-3 than the CP386 with 16Mhz. The

CP486 module is compatible downwards to the CP386 module. The CP386 functions are further

available. Addresses and parameters of the particular periphery elements has not been changed. The

software for the link with the PLC runs without changes.

The manual is arranged as follows:

Introduction

The information in this introduction is intended for application fields of the CP486 module,

structure and functioning of CP486, and moreover, specific components of the CP486 are described

enhancing the conventional AT standard.

Hardware:

First, the different CP486 versions and each of their special features are described. The modules are

differing in the number of interfaces, main memory capacity and mass storage, number of AT-bus

slots and the mounting dimension. This overview is followed by the hardware configuration before

installing in the PLC.

Plugs and Sockets:

All CP486 interfaces are described in this chapter including interconnection proposals and wiring

instructions.

BIOS- and System Programming:

This section contains the description of the CP486 firmware, firmware presettings and the module

programming on system oriented level. The standard user should attach importance thereof at most

to the description of firmware presetting - the SYSTEM-SETUP.

MS-DOS Utilities:

This chapter is concerned with different drivers and programs especially created and compiled for

CP486.

Introduction

8 VIPA GmbH CP486 ⋅ 4/94

Linkage with PLC:

This chapter describes detailed how to proceed with the linkage between PLC and CP486, that is

from the PLC point of view as well as from CP486 point of view.

1.2 Application Area

CP486 application within an automation system can be extended to many areas. Feasible application

areas are visualisation, measured value processing, production data acquisition, network servicing

up to the process control system and management computer. Hereto are added the most different

scope of duties with trade-specific standard software. Only the following aspects are important for

using the CP486:

- direct hardware linkage to the back plane bus via a standard CP interface with eight banks

enables a very fast communication with the PLC.

- linkage between PLC and CP486 is assisted by a system software supporting MS-DOS

programmers without STEP5 experience as well as STEP5 programmers without MS-DOS

experience (STEP5 from Siemens).

- CP486 is an PC-AT486 compatible computer.

- The enormous MS-DOS software world is made accessible for the PLC. Software packages are

directly applicable.

1.3 Structure and Operation

- Dualport-RAM:

The AT is directly interfaced to the back plane bus via a Dual Port RAM. This Dual Port RAM is

available on the PLC as standard CP interface with 8 banks. Data can be interchanged via

handling modules which also transfer synchronous to cycles the complete image of inputs,

outputs, markers, timers and counters to the AT. For every cycle you can exchange 4x127

variables in different directions. Communication is realized by polling or interrupt controlled.

- Communication Software

For communication between AT and PLC there are handling modules available providing the

data interchange element-oriented. Thus, several data elements (bit, byte, word, doubleword,

block) can be transferred per cycle at the same time. There is a continuously updated software

reference list for the standard software whose driver is adapted and loadable to CP486.

Introduction

CP 486 ⋅ 00/14 VIPA GmbH 9

1.4 Block Diagram of CP486

Introduction

10 VIPA GmbH CP486 ⋅ 4/94

1.5 Special Components

Interface Modules

The four serial interfaces are configurable by plugin modules. As a standard, the following

assignment is supplied: COM1 and COM3 as V24 interface, COM2 as 20mA interface and COM4

as RS422/485 interface.

Diagnostic Interface

All serial communications can be acquired by menas of the diagnostic terminal UPI-FOX via the

diagnostic interface. This interface makes available sending and receiving signals of the individual

interfaces as TTL signals.

Keyboard Extension

The module is equipped with special electronics enabling a keyboard cable extension up to 250m.

VGA Mode with Industrial RGB Monitors

The module includes in addition to the standard VGA signal an RGB signal for monitor connections

up to a distance of 250m.

Battery Backup

CP486 data are buffered by means of the battery in the PC (programmable controller). It has a

supplementary Lithium accumulator protecting the CP486 against overrun in removed mode

approx. 1/2 year.

Silicon Disk

Silicon disk is a storage medium without flexible components. It is suitable to application in rough

environment. Silicon disk is fixed installed and exchangeable only for servicing purposes. There are

following silicon disk versions:

- Chip Silicon Disk (IC3, IC4):

The module avails of two IC slots (IC3 and IC4) for the chip silicon disk. Different memory

modules (EPROMs, SRAMs or PEROMs) can be inserted into these slots. This chip silicon disk

has a capacity of 256KB or 1 MB respectively.

- Memory Card Silicon Disk

There is a plugin slot for the memory card silicon disk. The memory card is contrary to the

silicon disk an exchangeable medium based upon the cheque card memory. Memory cards have a

capacity of 128KB, 512KB and 1MB. OTP-ROM and SRAM memory cards are available.

Introduction

CP 486 ⋅ 00/14 VIPA GmbH 11

- Silicon Disk Additional Board

The different additional boards are plugged into the slot for the PC bus and thus, have a capacity

of up to 7MB. These silicon disk boards are available with FLASH-, SRAM- and EPROM

assembly.

The different types EPROM, SRAM, FLASH-PROM and OTP-ROM of the silicon disks differ

as follows:

- OTPROM-Disk is a read-only memory medium in the builtin mode comparable to a disk with

write protection. The OTPROM disk has to be programmed with a specific programming device.

The OTPROM card can be programmed only once and cannot be deleted again.

- EPROM disk is a read-only memory medium in the builtin mode comparable to a disk with

write protection. EPROMs of this disk are generated with an additional program and

programmed, before inserting into the base, with an EPROM program available on the market.

EPROMs can be deleted by means of UV light.

- FLASH-PROM-Disk is a read-only and recordable memory medium in the builtin mode. The

FLASH-PROM-DISK can be deleted and recorded agian in the builtin mode. The FLASH

memory can only be completely deleted and recorded again (with 12V erase voltage). This

memory can be recorded anew approximately 10000 times.

- PEROM disk is a read-only and recordable memory medium in the builtin mode. PEROM

modules can be deleted and recorded again in the buitin mode. Note: the PEROM meory can

only be completely deleted and recorded again (with 5V erase voltage). Only up to 1000 write

cycles are permitted.

- SRAM disk is a read-only able and recordable memory medium in the buitin mode comparable

to a recordable disk. But the read and write access is much more faster to the SRAM disk than to

a normal disk. The data remain backed up. The chip silicon disk is backed up approx. 100 days

by means of the accu of the CP486. The SRAM memory cards avail of an integrated,

exchangeable battery for approx. 100 days. So they can also be used as transportable me-mories.

The silicon disk additional boards have an own battery for nearly the same buffer time.

Hardware

12 VIPA GmbH CP486 ⋅ 00/14

2. Hardware

2.1 Structure of Modules

2.1.1 Structure of the Base Module

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 13

Structure of the Base Module

The module contains a PC-AT486 with:

- CPU80486SLC and FPU80387SX base

- main memory up to 4MB

- keyboard interface connection

- VGA graphics

- slot for interfacing flat displays

- up to 4 slots for serial interface modules (COM1, COM2,

COM3, COM4)

- up to 2 parallel interfaces (LPT1, LPT2)

- interface for floppy disk drive

- interface for hard disk

- base for silicon disk (2 memory chips)

- slot for silicon disk (memory card)

- removable 16bit AT bus

- 8K Dual Port RAM for PLC as CP interface

Hardware

14 VIPA GmbH CP486 ⋅ 00/14

2.1.2 Structure of CP486S Module (VIPAOrder-No. CP4-BG61):

Controller for analog

video signal

Monitor connection

COM1 (V24 interface)

COM2 (20mA interface)

Keyboard connection

LPT1 (printer interface)

24V socket (ext. supply)

Reset key with watchdog-LED

VIPA diagnostic interface

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 15

Structure of CP486S (VIPA Order-No. CP4-BG61):

- CPU80486SLC and base for FPU80387SX

- main memory 4MB (CP4-BG61)

- keyboard interface connection

- VGA graphics

- 2 serial interfaces COM1 (V24), COM2 (20mA) (see also chapter 1.5)

- 1 parallel interface (LPT1)

- slot for hard disk

- base for silicon disk (2 memory chips)

- slot for silicon disk (memory card)

- 8K Dual Port RAM to PLC as CP interface

Operation and display elements on the front panel:

- one 15-pin HD Cannon socket for monitor connection

- two 9-pin Cannon sockets for COMl (V24), COM2 (20mA)

- one DIN socket for standard AT keyboard and sym. line driver up to 250m

- parallel interface LPT1, Centronics-compatible with 25-pin Cannon socket

- plug clamp for external 24V DC power supply for an EL display or using the

keyboard extension

- LED display (red) for displaying an accumulated error (can be deleted by

pressing a RESET key)

- RESET key

- one 15-pin HD Cannon socket for diagnostic interface

Hardware

16 VIPA GmbH CP486 ⋅ 00/14

2.1.3 Structure of CP486M Module (VIPA Order-No. CP4-BG62):

Controller for analog

video signal

Monitor connection

COM1 (V24)

COM3 (V24)

COM2 (20mA)

COM4 (RS422/485)

Keyboard connection

LPT1 (printer interface)

Floppy disk drive

24V socket (ext. supply)

Reset key with watchdog-LED

VIPA diagnostic interface

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 17

Structure of CP486M (VIPA Order-No. CP4-BG62):

- CPU80486SLC and base for FPU80387SX

- main memory 4MB (CP4-BG62)

- keyboard interface connection

- VGA graphics

- slot for interface to flat displays

- 4 serial interfaces COM1 (V24), COM2 (20mA),

COM3 (V24), COM4(RS422/RS485) (see also chapter 1.5)

- 1 parallel interface (LPT1)

- slot for hard disk

- base for silicon disk (2 memory chips)

- slot for silicon disk (memory card)

- 3,5" floppy disk drive (720KB/1,44MB)

- 8K Dual-Port-RAM to PLC as CP interface

Operation and display elements on the front panel:

- one 15-pin HD Cannon socket for monitor connectionn

- four 9-pin Cannon sockets for COM1 (V24), COM2 (20mA),

COM3 (V24) and COM4 (RS422/485)

- one DIN socket for standard AT keyboard and sym. line driver up to 250m

- parallel interface LPT1, Centronics-compatible with 25-pin Cannon socket

- plug clamp for external 24V DC power supply for an EL display or using the

keyboard extension

- LED display (red) for displaying an accumulated error (can be deleted by

pressing a RESET key)

- RESET key

- one 15-pin HD Cannon socket for diagnostic interface

- one 3,5" floppy disk drive

Hardware

18 VIPA GmbH CP486 ⋅ 00/14

2.1.4 Structure of CP486ML Module (VIPA Order-No. CP4-BG63):

Controller for analog

video signal

Monitor connection

Floppy disk drive

COM1 (V24)

COM2 (20mA)

Keyboard connection

LPT1 (printer interface)

Opening for AT card

24V socket (ext. supply)

Reset key with watchdog-LED

VIPA diagnostic interface

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 19

Structure of CP486ML (VIPA Order-No. CP4-BG63):

- CPU80486SLC and base for FPU80387SX

- main memory 4MB (CP4-BG63)

- keyboard interface connection

- VGA graphics

- slot for interface to flat displays

- 2 serial interfaces COM1 (V24), COM2 (20mA) (see also chapter 1.5)

- 3,5" floppy disk drive (720KB/1,44MB)

- 1 parallel interface (LPT1)

- slot for hard disk

- base for silicon disk (2 memory chips)

- slot for silicon disk (memory card)

- removable 16bit AT bus with 1 slot

- 8K Dual-Port-RAM to PLC as CP interface

Operation and display elements on the front panel:

- one 15-pin HD Cannon socket for monitor connectionn

- two 9-pin Cannon sockets for COM1 (V24), COM2 (20mA),

- one DIN socket for standard AT keyboard and sym. line driver up to 250m

- parallel interface LPT1, Centronics-compatible with 25-pin Cannon socket

- plug clamp for external 24V DC power supply for an EL display or using the

keyboard extension

- LED display (red) for displaying an accumulated error (can be deleted by

pressing a RESET key)

- RESET key

- one 15-pin HD Cannon socket for diagnostic interface

- one 3,5" floppy disk drive

- an opening for AT cards

Hardware

20 VIPA GmbH CP486 ⋅ 00/14

2.1.5 Structure of CP486L Module (VIPA Order No. CP4-BG64):

Controller for analog

video signal

Monitor connection

COM1 (V24)

COM3 (V24)

Floppy disk drive

COM2 (20mA)

COM4 (RS422/485)

Keyboard connection

LPT1 (printer interface)

24V socket (ext. suppy)

Reset key with watchdog-LED 2 openings

for AT cards

VIPA diagnostic interface

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 21

Structure of CP486L (VIPA Order No. CP4-BG64):

- CPU80486SLC and base for FPU80387SX

- main memory 4MB (CP4-BG64)

- keyboard interface connection

- VGA graphics

- slot for interface to flat displays

- 4 serial interfaces COM1 (V24), COM2 (20mA),

COM3 (V24), COM4(RS422/RS485) (see also chapter 1.5)

- 1 parallel interface (LPT1)

- 3,5" floppy disk drive (720KB/1,44MB)

- slot for hard disk

- base for silicon disk (2 memory chips)

- slot for silicon disk (memory card)

- removable 16bit AT bus with 2 slots

- 8K Dual-Port-RAM to PLC as CP interface

Operation and display elements on the front panel:

- one 15-pin HD Cannon socket for monitor connectionn

- four 9-pin Cannon sockets for COM1 (V24), COM2 (20mA),

COM3 (V24) and COM4 (RS422/485)

- one DIN socket for standard AT keyboard and sym. line driver up to 250m

- parallel interface LPT1, Centronics-compatible with 25-pin Cannon socket

- plug clamp for external 24V DC power supply for an EL display or using the

keyboard extension

- LED display (red) for displaying an accumulated error (can be deleted by

pressing a RESET key)

- RESET key

- a 15-pin HD Cannon socket for diagnostic interface

- a 3,5" floppy disk drive

- two openings for AT cards

Hardware

22 VIPA GmbH CP486 ⋅ 00/14

2.1.6 Structure of CP486XL Module (VIPA Order No. CP4-BG65):

Controller for analog

video signal

Monitor connection

COM1 (V24)

COM3 (V24) Floppy

disk drive

COM2 (20mA)

COM4 (RS422/485)

Keyboard connection

LPT1 (printer interface)

24V socket (ext. suppy)

Reset key with watchdog-LED 3 openings

for AT cards

VIPA diagnostic interface

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 23

Structure of CP486XL (VIPA Order No. CP4-BG65):

- CPU80486SLC and base for FPU80387SX

- main memory 4MB (CP4-BG65)

- keyboard interface connection

- VGA graphics

- slot for interface to flat displays

- 4 serial interfaces COM1 (V24), COM2 (20mA),

COM3 (V24), COM4(RS422/RS485) (see also chapter 1.5)

- 1 parallel interface (LPT1)

- 3,5" floppy disk drive (720KB/1,44MB)

- slot for hard disk

- base for silicon disk (2 memory chips)

- slot for silicon disk (memory card)

- removable 16bit AT bus with 3 slots

- 8K Dual-Port-RAM to PLC as CP interface

Operation and display elements on the front panel:

- one 15-pin HD Cannon socket for monitor connectionn

- four 9-pin Cannon sockets for COM1 (V24), COM2 (20mA),

COM3 (V24) and COM4 (RS422/485)

- one DIN socket for standard AT keyboard and sym. line driver up to 250m

- parallel interface LPT1, Centronics-compatible with 25-pin Cannon socket

- plug clamp for external 24V DC power supply for an EL display or using the

keyboard extension

- LED display (red) for displaying an accumulated error (can be deleted by

pressing a RESET key)

- RESET key

- a 15-pin HD Cannon socket for diagnostic interface

- a 3,5" floppy disk drive

- three openings for AT cards

Hardware

24 VIPA GmbH CP486 ⋅ 00/14

2.1.7 Diagram of DIP Switches, Jumpers and Plug Connectors

PCB 5012V14:

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 25

PCBs 5012V15, 5012V16 and 5012V17

Hardware

26 VIPA GmbH CP486 ⋅ 00/14

2.2 Setting of DIP Switches

Setting of DIP Switch S1:

OFF ON

1 PC type selection PLC-115 PLC-135/PLC-155
(NAU/BAU-Signal of X1) (NAU/BAU-Signal of X2)

2 vacant
3 PLC-signal BASP will not be triggers an interrupt

evaluated on the CP486vacant

4 PLC-signal CPKL will not be triggers a RESET
evaluated on the CP486

5 PLC-interrupt IRD off on
6 PLC-interrupt IRC off on
7 PLC-interrupt IRB off on
8 PLC-interrupt IRA off on

Delivery status: 1-2:ON, 3:ON, 8:OFF, 5-8:OFF

Remarks:

The DIP-switch S1/4 must be set to ON, if the module is used in the ZG188.

The DIP-switch S1/3 is not used on the boards (PCB-No.) 5012V14, 5012V15, 5012V16, 5012V17.

The described functions of this switch are available on the boards (PCB-No.) 5012V13, 5012V31....

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 27

Setting of DIP Switch S2:

DIP switches 1-3 determine the system configuration if the system SETUP has been lost. The

system configuration is backed up by a Lithium accumulator approx. 6 months. If the module is

stored more than 6 months, then the battery is empty and the filed configuration lost. In this case, a

configuration can be set by means of switches 1-3 to ensure a module startup. The exact

configuration can be loaded by software after the startup.

An empty battery is recharged after approx. 3 days operating time.

4 3 2 1 DIP-switch (default setting in the case of default system configuration)
(battery failure):

off off boot from silicon disk at address C00000 (hex)
off on reserved
on off boot from silicon disk at address 800000 (hex)
on on boot from floppy disk drive A:

off no bank visible towards PLC
on active bank area: bank 32-39

off reserved
on reserved

8 7 6 5 DIP-switch (PCB no. 5012V15, 5012V16, 5012V17):

off off off off VGA monitor with separate Syncs
off off off on RGB monitor (up to VGA-BIOS V11 only graph mode)
off off on off RGB monitor (up to VGA-BIOS V11 only HSync positive)
off off on on RGB monitor (up to VGA-BIOS V11 only HSync negative)
off on off off Finlux-EL display (640*350)
off on off on Hercules, EGA monochrome
off on on off EGA monitor (640*350)
off on on on CGA monitor (80*25)
on on off on CGA monitor (40*25)
on on on off EGA monitor (640*200)
on on on on flat display via additional adapter

6 5 DIP-switch (PCB no. 5012V30, 5012V31, ...)
off VGA monitor with separate Syncs
on RGB monitor

off color (default setup witchout monitor)
on monochrome (default setup witchout monitor)

Delivery status: 1-3:ON, 4-8:OFF

Hardware

28 VIPA GmbH CP486 ⋅ 00/14

2.3 Configuration of 24V Power Supply

CP486 must be supplied with 24 Volt DC in following cases:

- for running an active 20mA interface

- for using the optional keyboard extension

- when connecting a flat display

24 Volt power supply is set up via the jumper field X3:

Jumper X3: O O O O Supply via 24 Volt socket at the front

1 O O O O and delivered connecting cable

P24 M24

Jumper X3: O O O O Suppy from upper back plane bus plug

1 O O O O

P24 M24

Jumper X3: O O O O Supply from lower back plane bus plug

1 O O O O

P24 M24

Attention:

Pay attention to limit data of the supply unit used!

When using the keyboard extension or flat display, a potential interface for 24 Volt and 5 Volt

voltage source must be enabled in the case of external 24 Volt supply (supply via 24 Volt socket at

module front), e.g. by connecting the 5 Volt mass with 24 Volt mass at the central mass point.

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 29

Overview of the Circuit Diagram of the 5V and 24V Power Supply:

ext.

24V

supply

diagnostic

socket

+24V

M24

+5V

M5

keyboard

socket

+24V

M24

+5V

M5
F1

F2

VGA

socket

+24V

M5

+5V

S5
upper

bus

plug

+5V

M5

+24V

M24

S5
lower

bus

socket

+ 24V

M24

+ 5V

M5

1
X3

PLC

PLC

Hardware

30 VIPA GmbH CP486 ⋅ 00/14

2.4 Installation of Chip Silicon Disk

The module contains 2 bases (IC3 and IC4) for special memory chips. The bases for the silicon disk

must be respectively assembled and the jumpers set up.

Jumper setup differs for the various base PCB (printed circuit board) versions.

Battery Backup of the Chip Silicon Disk SRAM:

The silicon disk SRAM can be operated battery backed-up. The battery back-up is adjusted via a

solder board (below DIP switch S1) for the modules 7458V24/7459V24 (PCB 5012V14):

PCB 5012V14

Setting: 1-2 closed 2-3 open Silicon disk is battery-backed

(permitted only for silicon disk SRAM)

1-2 open 2-3 closed Silicon disk is not battery-backed (standard setting)

For the modules 7458V25/7459V25 (PCB 5012V15) , 7458V26/7459V26 (PCB 5012V16) and the

modules 7458V27/7459V27 (PCB 5012V17) the battery back-up is set up via jumper Y23 (in the

bases of the silicon disk chips IC3 and IC4):

RAM UBAT RAM UBAT
O O O O

SD O O BUS SD O O BUS
O O O O

Y23 ROM VCC Y23 ROM VCC

Chip silicon disk is not battery backed-up Chip silicon disk is battery backed-up

Started with the PCB 5012V17, the pin X16/B29 can be switched over from 5V power supply (in
VCC position) to battery supply (in position UBAT) additionally via the jumper "BUS". Standard
adjustment is in position VCC!. The position UBAT is required only to run special VIPA memory
modules (e.g. 7MB silicon disk module).
Attention: A wrong configuration can cause malfunctions and defects.

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 31

Base board 7458V24/7459V24 (PCB 5012V14), base board 7458V25/7459V25

(PCB 5012V15), base board 7458V26/7459V26 (PCB 5012V16),

base board 7458V27/7459V27 (PCB 5012V17):

Jumper fields X38 and X39 are placed onto sockets of silicon disk chips IC3/IC4.

EPROM 256KB: X38 RAM X39

O O O O O O 256 O O PEROM

O O O O O O O O

O O O O O O 1024 O O EPROM / RAM

1 4 7 10 13 16 1 4

EPROM / PEROM

EPROM 1MB X38 RAM X39

O O O O O O 256 O O PEROM

O O O O O O O O

O O O O O O 1024 O O EPROM / RAM

1 4 7 10 13 16 1 4

EPROM / PEROM

PEROM 256KB: X38 RAM X39

O O O O O O 256 O O PEROM

O O O O O O O O

O O O O O O 1024 O O EPROM / RAM

1 4 7 10 13 16 1 4

EPROM / PEROM

SRAM 256KB: X38 RAM X39

O O O O O O 256 O O PEROM

O O O O O O O O

O O O O O O 1024 O O EPROM / RAM

1 4 7 10 13 16 1 4

EPROM / PEROM

SRAM 1MB: X38 RAM X39

O O O O O O 256 O O PEROM

O O O O O O O O

O O O O O O 1024 O O EPROM / RAM

1 4 7 10 13 16 1 4

EPROM / PEROM

Hardware

32 VIPA GmbH CP486 ⋅ 00/14

2.5 Installation of the Memory Card Silicon Disk

The memory card is installed by inserting the memory card into the provided plugin socket.The

memory card silicon disk is always set up to address 800000.

2.6 Installation of an Additional Silicon Disk Board

Various additional silicon disk boards are available or in progress. These are provided essentially

for the CP486S and CP486M. They are to be plugged into the PC/AT extension bus /X10, X16 - see

page 20, 21).

The different additional boards can be set up according to the enclosed documentation.

2.7 Numeric Processor Installation (FPU)

The numeric processor is installed by inserting the module into the respective base (IC19)

(Attention: consider module positioning when inserting). Installation should be realized by VIPA or

skilled personnel.

(Note the instructions how to handle with electrostatic sensitive components).

At the system startup the numeric processor is automatically identified. Detailed information you

get in the manual and from the disk (included in the scope of supply). The disk contains also the test

software for the numeric processor.

Factual use of the numeric processor must be configured possibly in the applications software (see

documentation for the applications software).

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 33

2.8. Interface Installation for VGA Flat Displays

A module (optional) can be plugged into the pin header X22 having a 15-pin SUBD socket at the

module front. VGA flat display with 16 grey levels (EL display, 640*480 pixel) or a color TFT

display (640*480 pixel, max. 64 colors) can be connected to this 15-pin SUBD socket.

2.9 Setting of AT Additional Boards

The extension bus corresponds to the IBM PC/AT extension bus with following restrictions:

- +12V,-12V and -5V can be loaded together with approx. 1 Watt

- EGA/VGA controller, FDD controller, HDD/TFI controller, COM1-4 and

- LPT1 are already integrated in the motherboard and can no more be plugged in.

- For reasons of space only a short 8/16Bit AT card can be plugged in. The

cards are allowed to have a max. dimension of 108mm (incl. gold reed) * 158mm.

Before installing, remove the metal angle at the front of the AT card. After the card has been

inserted, mount again the angle from outside.

Attention: please set up the card configuration (i.e. address assignment, interrupt assignment and

DMA-assignment) before installing it, in such a way to avoid collision with the CP486. Dual

assignments can damage and destroy the CP486 as well as the additional card.

Hardware

34 VIPA GmbH CP486 ⋅ 00/14

2.10 Slots for CP486 in the PC

Following surveys show the possible installation places (signed by x) for the CP486 in the different

PLC card cages.

Slots in PLC-115U

Slots

Power supply module X
Central module X
VIPA-CP486 (in CR 700-1) X

VIPA-CP486 (in CR 700-2) X X X X X X

VIPA-CP486 (in CR 700-3) X X X X X X X X X

CP486 has to be run in the adaptation case in PLC-115.

Slots in PLC-135U

Slots

Coordinator X

R-, S-, M-processor X X X X

Communication processors X X X X X X X X

Interfaces 300-5, 301-5 X
Interfaces 300-3, 301-3, 302 X X X X
VIPA-CP486 X X X X X X X

Hardware

CP 486 ⋅ 00/14 VIPA GmbH 35

Slots in PLC-150U

Slots

Central module X X X X

Marshalling module 756 X

Main memory 340, 350 X X X X X X

Interfaces 300-5, 301-5 X X

Interfaces 300-3, 301-3 X X X X

PG-interface connections X X

VIPA-CP486 X X X X X X X X X X

Slots 3, 11 and 19 are of use for the CP486 only if the marshalling module 756
or the VIPA economy memory are inserted to slot 27.

Slots in PLC-155U

Slots

Coordinator X

Central modules X X X

Communication processors X X X X X X X X X X X X X

Interfaces 300-5, 301-5 X X

Interf. 300-3, 301-3, 301-5, 308-3 X X X X

VIPA-CP486 X X X X X X X X X X X X X

Hardware

36 VIPA GmbH CP486 ⋅ 00/14

Slots in EG-185U

Slots

Interfaces 300 X

Interfaces 314, 318 X

VIPA-CP486 X X X X X X X X X X X X X X X X

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 37

3. Assignment of Sockets and Plugs

The figures show plugs or sockets when regarding the module in the card cage. The top in the figure

is also the top on the plug.

3.1 15-pin SubD-Socket for Connecting the Monitor

15
10

5

14
9

4

13
8

3

12
7

2

11
6

1

Socket assignment is specified by the DIP switch SW2 (5,6,7,8), (section 2.2).

Mode --------------------- analog modes ------------------------- ------------- digital modes** ----------------

VGAcolor VGAmono RGB BAS EGA/CGA EGA mono EGA-EL

Cab.length 5-10m 5-10m 250m 250m 1.5m 1.5m 1.5m

PIN-NO.

01 red - red - red - clock

02 green video green+sync int.+sync green intensity el-hsync

03 blue - blue - blue video intensity

04 ------ not used--

05 ------ Gnd---

06 ------ Gnd red--

07 ------ Gnd green---

08 ------ Gnd blue--

09 ------ +24V supply voltage protected for external consumers (via micro fuse F1 (2A)---------------------------------

10 ------ Gnd sync--

11 ------- not used--

11 ------- not used--

13 ------ Hsync--

14 ------ Vsync--

15 ------ +5V supply voltage protected for external consumers (via micro fuse F2 (2A)*-----------------------------------

*: not connected on PCB 5012V17 and following
**: not available on PCB 5012V30 and following

Analog video voltage can be set between approx. 0.5V and 1.5V by means of the trimmer R1

(accessible from the front side of the module). Thus long cable dissipations can be compensated. As

a standard 0.7V are set. Attention: voltages over 0.7V can damage the connected monitor!

The 15-pin high-density DSUB socket is used to connect the monitor. The socket is assigned similar

to the socket of an original VGA monitor. All other monitors must be connected via special

connection cables.

Assignment of Plugs and Sockets

38 VIPA GmbH CP486 ⋅ 00/14

3.2 9-pin SubD-Plug with V24 Interface (COM1 and COM3)

DSR- 6 O
O 1 DCD

RTS- 7 O
O 2 RXD

CTS- 8 O
O 3 TXD

RI 9 O
O 4 DTR-

O 5 GND

The interface contains both types of handshake-signals (RTS/CTS and DSR/DTR). Which type of

signals is to be used depends on wiring and programming of the interface.

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 39

3.3 9-pin SubD-Plug with 20mA Interface (COM2)

This interface can be operated as an active and passive 20mA-interface. The active operation

requires a module supply of 24V. The 24V supply is configured by means of the jumper field X3

(cf. section 2.3)

TXD- 6 O
O 1

S1- 7 O
O 2 TXD+

RXD- 8 O
O 3 S1+

S2- 9 O
O 4 RXD+

O 5 S2+

Passive 20mA-interface:

Passive interface operation uses 4 interface signals.

Active 20mA-interface:

The active operation avails of power sources at S-signals that are to be connected respectively to the

data lines. In this case the module must be supplied with 24V.

Assignment of Plugs and Sockets

40 VIPA GmbH CP486 ⋅ 00/14

3.4 9-pin SubD-Plug with RS422/485 Interface (COM4)

This interface can be operated as RS422-interface, i.e. for point-to-point circuit with separate send-

receive lines, as well as RS485-interface for a bus system with send-receive function at the same

line. For this purpose, the operating mode is switched over via a bus master by appropriate attending

the SEL-signal.

TxD lines and RxD lines require for all cases each in pairs twisted and in pairs shielded lines.

3.4.1 Operation as RS422 Interface:

TxD- 6 O

O 1 -

- 7 O

O 2 TxD+

RxD- 8 O

O 3 -

- 9 O

O 4 RxD+

O 5 -

Pins signed with "-" are not used for the RS422 operation. They are not allowed to be connected!

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 41

3.4.2 Operation as RS485 Interface:

- 6 O

O 1 -

DTR 7 O

O 2 -

RxD-/TxD- 8 O

O 3 SEL

RTS 9 O

O 4 RxD+/TxD+

O 5 -

For RS485 operation only a two-wire line is terminated. The SEL-signal is used to switch over

among send and receive. A logic 1 (5V) switches to transmission and a logic 0 (0V) to receive.

SEL-signal can be controlled via DTR, via RTS or externally. This is selected via a jumper in the

plug. Pins signed with "-" are not used for the RS485 operation. They are not allowed to be

connected!

Assignment of Plugs and Sockets

42 VIPA GmbH CP486 ⋅ 00/14

3.5 5/8-pin DIN Socket for Keyboard

8

7 O O 6

3 O O O 1

5 O O 4

O

2

Pinno. Signal

1 KBCLK

2 KBDATA

3 GND (24V) (for option keyboard extension)

4 GND (5V)

5 +5V current voltage for keyboard

(protected by micro fuse F2 (2A))

6 -KBDATA (for option keyboard extension)

7 -KBCLK (for option keyboard extension)

8 +24V (current voltage for option keyboard extension,

protected by micro fuse F1 (2A))

The module has to be supplied with 24V for the operation of the optional keyboard extension.

24Volt power supply is configured via the jumper field X3. (cf. section 2.3)

Note:

AT-keyboards with automatical switchover between XT and AT mode are not supported by the

CP486. Such keyboards are not identified and output a keyboard error. If possible, such keyboards

should be set up to forced AT mode.

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 43

3.6 25-pin SubD-Socket with Centronics Interface (LPT1)

/AFD 14 O
O 13 SLCT

/ERR 15 O
O 12 PE

/INIT 16 O
O 11 BUSY

/SLCTIN 17 O
O 10 /ACK

GND 18 O
O 9 PD7

GND 19 O
O 8 PD6

GND 20 O
O 7 PD5

GND 21 O
O 6 PD4

GND 22 O
O 5 PD3

GND 23 O
O 4 PD2

GND 24 O
O 3 PD1

GND 25 O
O 2 PD0

O 1 STB-

Assignment of Plugs and Sockets

44 VIPA GmbH CP486 ⋅ 00/14

3.7 2-pin Plugin Socket for External 24V Supply

CP486 delivery includes a 1m long connecting cable with plug. M24 (mass of 24V) and P24 (+24V)

is are supplied via the two pins. Both pins are optionally assigned. Polarity is of no importance.

Attention:

Concerning the 24V supply via this socket it must be ensured that the 24V supply of back plane bus

is deactivated via the jumper field X3 (cf. section 2.3)!

3.8 15-pin SubD-Socket with VIPA Diagnostic Interface

15 TxD COM1
10 RxD COM1

5 GND

14 TxD COM2
9 RxD COM2

4 +5V

13 TxD COM3
8 RxD COM3

3 -

12 TxD COM4
7 RxD COM4

2 -

11 +24V
6 M24

1 screen

VIPA diagnostic interface disposes of send and receive data lines (RxD and TxD) of the four

present COM interfaces for listening as TTL-signals. Evaluation can be carried out by means of

UPI-FOX of VIPA.

Supply voltages 5V and 24V are made available for external consumers.

5V supply is protected by the micro fuse F2 (2A).

24V supply is protected by the micro fuse F1 (2A).

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 45

3.9 Two-Part Clip Connector with AT Bus

B A

GND SA0 31

OSC SA1 30

+5V SA2 29

BALE SA3 28

T/C SA4 27

DACK2- SA5 26

IRQ3 SA6 25

IRQ4 SA7 24

IRQ5 SA8 23

IRQ6 SA9 22

IRQ7 SA10 21

CLK SA11 20

RFSH SA12 19

DRQ1 SA13 18

DACK1 SA14 17

DRQ3 SA15 16

DACK3 SA16 15

IOR- SA17 14

IOW- SA18 13

SMEMR- SA19 12

SMEMW- AEN 11

GND IOCHRDY 10

+12V- SD0 9

0WS SD1 8

-12V SD2 7

DRQ2 SD3 6

-5V SD4 5

IRQ9 SD5 4

+5V SD6 3

RESET SD7 2

GND IOCHK 1

Assignment of Plugs and Sockets

46 VIPA GmbH CP486 ⋅ 00/14

D C

GND SD15 18

MASTER- SD14 17

+5V SD13 16

DRQ7 SD12 15

DACK7- SD11 14

DRQ6 SD10 13

DACK6- SD9 12

DRQ5 SD8 11

DACK5- MEMW- 10

DRQ0 MEMR- 9

DACK0- LA17 8

IRQ14 LA18 7

IRQ15 LA19 6

IRQ12 LA20 5

IRQ11 LA21 4

IRQ10 LA22 3

IOCS16- LA23 2

MEMCS16- SBHE 1

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 47

3.10 PLC Base Plug (48-pin Male Connectors)
3.10.1 Base Plug X1

d b z

nc M +5V 2

UBAT PESP nc 4

ADB12 ADB00 /CPKL 6

ADB13 ADB01 /MEMR 8

ADB14 ADB02 /MEMW 10

ADB15 ADB03 /RDY 12

IRA ADB04 DBO 14

IRB ADB05 DB1 16

IRC ADB06 DB2 18

IRD ADB07 DB3 20

/BAU115 ADB08 DB4 22

/NAU115 ADB09 DB5 24

nc ADB10 DB6 26

DSI ADB11 DB7 28

+24V BASP M24V 30

nc M nc 32

3.10.2 Base Plug X2

d b z

nc M +5V 2

nc nc nc 4

nc nc nc 6

nc nc nc 8

nc nc nc 10

nc nc nc 12

nc nc /NAU 14

nc nc /BAU 16

nc nc nc 18

nc nc nc 20

/TxDSN nc nc 22

nc nc nc 24

nc /RxDSN nc 26

nc nc nc 28

nc nc M24V 30

nc M +24V 32

Assignment of Plugs and Sockets

48 VIPA GmbH CP486 ⋅ 00/14

3.11 Memory Card Plug (Panasonic Memory Card)

1 +5V A14 2

3 A12 WE- 4

5 A7 A13 6

7 A18 A19 8

9 A6 A8 10

11 A5 A9 12

13 A4 A11 14

15 A3 OE- 16

17 A2 A10 18

19 A1 CE- 20

21 A17 A15 22

23 A16 A0 24

25 D7 D0 26

27 D6 D1 28

29 D5 D2 30

31 D4 D3 32

33 - GND 34

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 49

3.12 Slot for Interface Modules

DCD 1 O
O 2 +5V

SubD1 3 O
O 4 +24V

SubD6 5 O
O 6 DSR

SubD2 7 O
O 8 DTR

SubD7 9 O
O 10 RxD

SubD3 11 O
O 12 CTS-

SubD8 13 O
O 14 RTS-

SubD4 15 O
O 16 TxD

SubD9 17 O
O 18 M24

SubD5 19 O
O 20 GND

RI 21 O

Assignment of Plugs and Sockets

50 VIPA GmbH CP486 ⋅ 00/14

3.13 30/34-pin Pin Header for Floppy Disk Drive (X13)

34 +12V (input) -12V (input) 33

30 Side Select 0 Signal GND 29

28 Read Data Signal GND 27

26 Write Protect Signal GND 25

24 Track 00 Signal GND 23

22 Write Gate Signal GND 21

20 Write Data Signal GND 19

18 Step Signal GND 17

16 Direction - 15

14 Motor On 0 - 13

12 Ready VCC 5V 11

10 Disk Change VCC 5V 9

8 Drive Select 0 VCC 5V 7

6 Index VCC 5V 5

4 GND GND 3

2 Drive Select 1 Motor On 1 1

The pins 33 and 34 are existing started with PCB 5012V16 and are used to supply +/-12Volt for the

AT-bus.

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 51

3.14 50-pin Socket (X12) with TFI Interface for Hard Disk

2 - - 1

4 - - 3

6 - - 5

8 GND RESET- 7

10 D8 ID7 9

12 D9 D6 11

14 D10 D5 13

16 D11 D4 15

18 D12 D3 17

20 D13 D2 19

22 D14 D1 21

24 D15 D0 23

26 - GND 25

28 GND - 27

30 GND IOW- 29

32 GND IOR- 31

34 ALE - 33

36 GND - 35

38 IOCS16- INT 37

40 - A1 39

42 A2 A0 41

44 CS1- CS0- 43

46 GND LED- 45

48 +5V +5V 47

50 - - 49

Assignment of Plugs and Sockets

52 VIPA GmbH CP486 ⋅ 00/14

3.15 50-pin Socket (X11) with AT Bus Signals for Special Use

2 IOCHRDY- SA3 1

4 AEN SA4 3

6 MEMR- SA5 5

8 MEMW- SA6 7

10 SBHE- SA7 9

12 MASTER- SA8 11

14 IOCS16- SA9 13

16 MEMCS16- SA10 15

18 BALE SA11 17

20 T/C SA12 19

22 -5V SA13 21

24 REFRESH- SA14 23

26 SMEMR- SA15 25

28 SMEMW- SA16 27

30 CSMCARD- SA17 29

32 IDENH- SA18 31

34 IDENL- SA19 33

36 IRQ9 +12V 35

38 SYSCLK LA17 37

40 IRQ11 LA18 39

42 IRQ10 LA19 41

44 DACK6- LA20 43

46 DRQ6- LA21- 45

48 -12V LA22 47

50 OSC LA23 49

Both plugin connectors X11 and X12 have a full 16Bit AT bus excepted some interrupt and DMA

channels. Special adapters (of the H1 adapter) can be connected via this bus. In this case, the hard

disk drive has to be removed from the motherboard and is to be installed onto the additional board.

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 53

3.16 26-pin Pin Header (X27) with Centronics Interface (LPT 2)

26 - SLCT 25

24 GND PE 23

22 GND BUSY 21

20 GND ACK- 19

18 GND PD 17

16 GND PD6 15

14 GND PD5 13

12 GND PD4 11

10 GND PD3 9

8 SLCTIN- PD2 7

6 INIT- PD1 5

4 ERR- PD0 3

2 AFD- STB- 1

This interface can be made available at the module front via an optional connection cable with cover

sheet. Then there is the LPT2:-Centronics interface on the 25-pin SubD socket having the following

assignment:

/AFD 14 O
O 13 SLCT

/ERR 15 O
O 12 PE

/INIT 16 O
O 11 BUSY

/SLCTIN 17 O
O 10 /ACK

GND 18 O
O 9 PD7

GND 19 O
O 8 PD6

GND 20 O
O 7 PD5

GND 21 O
O 6 PD4

GND 22 O
O 5 PD3

GND 23 O
O 4 PD2

GND 24 O
O 3 PD1

GND 25 O
O 2 PD0

O 1 STB-

Assignment of Plugs and Sockets

54 VIPA GmbH CP486 ⋅ 00/14

3.17 20-pin Pin Header (X22) for Flat Display Connection

up to PCB 5012V15: 1 ACDCLK GND 2

3 V7 V0 4

5 CLKX V1 6

7 SCLK V2 8

9 WGTCLK GND 10

11 V6 V3 12

13 +5V VCC V4 14

15 BLANK- V5 16

17 HSYNC GND 18

19 VSYNC +24V 20

from PCB 5012V16 on: 1 ROT BLANK 2

3 +24V VCC VS 4

5 +5V VCC HS 6

7 GND PCLK 8

9 V7 V3 10

11 V6 V2 12

13 V5 V1 14

15 V4 V0 16

17 - - 18

19 - CLK-EXT 20

Supply voltages 5V and 24V are made available for external consumers.

5V supply is protected by the micro fuse F2 (2A).

24V supply is protected by the micro fuse F1 (2A).

Assignment of Plugs and Sockets

CP 486 ⋅ 00/14 VIPA GmbH 55

3.18 16/24-pin Pin Header (X21) for Front Display and Keyboard

up to PCB 5012V15: 16 COM4 RxD COM4 TxD 15

14 COM3 RxD COM3 TxD 13

12 COM2 RxD COM2 TxD 11

10 COM1 RxD COM1 TxD 9

8 HDD-LED Out D4 7

6 Turbo-LED Out D5 5

4 GND Out D6 3

2 +5V VCC Out D7 1

from PCB 5012V16 on: 24 -KBCLK COM4 RxD COM4 TxD 22

21 GND (24V) COM3 RxD COM3 TxD 19

18 +5V COM2 RxD COM2 TxD 16

15 KBDATA COM1 RxD COM1 TxD 13

12 +24V HDD-LED Out D4 10

9 GND UBAT Out D5 7

6 KBCLK GND Out D6 4

3 -KBDATA +5V VCC Out D7 1

UBAT (PIN 8) is available started with PCB 5012V17.

Assignment of Plugs and Sockets

56 VIPA GmbH CP486 ⋅ 00/14

3.19 2-pin Pin Header (X4) for Speaker Connection

Pinno. Signal

1 5V VCC

2 VF (voice-frequency) signal

3.20 Fuses for External Current Consumers

F1 Fuse for 24V outputs (2A)

F2 Fuse for 5V outputs (2A)

These plugin fuses protect the 5V- and 24V connections for external consumers against

overloading.

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 57

4. BIOS Description and System Programming

4.1 System Structure

CP486 has a firmware with basic functions for the present hardware - so called BIOS. The BIOS of

the CP486 consists of several utilities:

QUADTEL-BIOS: This part has usual functions for servicing of standard components of an AT-

compatible computer.

VIPA-BIOS: VIPA has supplemented some additional functions as initialization and

servicing of the linkage hardware to the PLC, additional drivers for silicon disk

and memory card including the boot functions and functions for a secure

startup also after loss of system configuration.

C&T-VGA-BIOS: This BIOS incorporates functions for operating the connected monitor.

Some BIOS utilities can be parameterized. For this purpose, the firmware contains a SETUP

function. System Setup is set by VIPA appropriate to system configuration and remains stored in the

module battery backed approx. 1500 hours in the OFF-mode. In the case of battery discharge a

default setup is used to ensure the module start. Certain setups of the system configuration can be

realized by the user via the SETUP.

BIOS and System Programming

58 VIPA GmbH CP486 ⋅ 00/14

4.2 BIOS-SETUP

At the system startup the active terminal displays the BIOS version. First BIOS runs a test with

different system components and then a memory test. After test completion the system tries to boot

from the disk drive A, if existent, and then from disk drive C, if existent.

The SETUP can be invoked only during the system startup by pressing the <F2> key. This input

ensues as soon as the respective message is displayed on the screen. This is the case started with

BIOS version V18. Up to the BIOS version V17, the SETUP is invoked by concurrently pressing

"CTRL", "ALT" and "s" during system startup.

4.2.1 VIPA-BIOS-SETUP

First the VIPA-SETUP appears with the module series number (hexadecimal) and the fields

password input, bank parameterization and silicon disk selection. This window shows moreover a

system configuration (if battery is discharged) being lost. In the lower part of the screen are

displayed information about the key assignment for operating the SETUP:

(The text in brackets is the translation of the displayed!)
(VIPA-Setup for bank interface and silicon disk V0.3)

VIPA-Setup für Kachelinterface und Silikondisk V0.3

--

(Serial number of the module:)

Seriennummer der Baugruppe: 0305

(Change password:)

Passwort ändern:

(Current bank number:)

Aktuelle Kachelnummer: 32-39

(Disk drive A:)

Laufwerk A: FLOPPY-Disk

--

�� Cursor bewegen F5,F6 auswählen F10 übernehmen ESC Setup verlassen

Move Cursor) (Select) (Take over) (Leave setup)

A password (8 ASCII-characters) can be entered in the password-field of the SETUP. No password

is specified, as long as the SETUP-field is displayed as a white block. In this case you select other

SETUP options. A password is entered by an input of an ASCII-sequence up to 8 characters in the

password field, which has to be finished by pressing the ENTER key. As soon as a password is

entered the password field will not be displayed as a white but a black field. In this case the user can

enter the SETUP in order to change the password or resp. the system setup only if the stored

password is specified. If the ENTER key is pressed instead of entering an ASCII character in the

password field, the password will be deleted.

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 59

In the bank field the base address of the PLC bank can be set from 0 ... 248 in steps of 8. The

specified area is activated immediately at the start up of the CP486 and is available at the PLC side.

By means of the SETUP field "disk drive A" the user is able to specify further drive types (also a

silicon disk) as boot drive for drive A. In order to take an effect, a floppy disk drive for A has to be

selected in the second part of the SETUP.

Different silicon disks can be installed at the CP486, whereby the chip silicon disk and the memory

card silicon disk are available directly on the module (optional):

- The chip silicon disk (IC3,IC4) is set hardware-specific to the address C00000 hex. It can be

assembled with SRAMs, EPROMs or PEROMs.

- The memory card silicon disk (memory card plugin socket) is set hardware-specific to the

address 800000 hex. Memory cards are available as SRAM cards and OTP cards.

- Further silicon disks are available as additional plugin boards. The addresses of these silicon

disks can be specified on the additional boards.

One of these silicon disks can be used for booting the system. The user has to specify the address

and the storage type - RAM or ROM - of the requested boot drive:

- ROM on base address 80 0000 hex memory card silicon disk or add. silicon disk board

- RAM on base address 80 0000 hex memory card silicon disk or add. silicon disk board

- ROM on base address C0 0000 hex chip silicon disk or add. silicon disk board

- RAM on base address C0 0000 hex chip silicon disk or add. silicon disk board

If in addition a floppy disk drive is to be used, it must be redirected to the second floppy disk drive.

For this purpose, the jumper field A/B on the disk interface board must be set to B and the disk

drive B in the BIOS-Setup.

Examples:

VIPA-SETUP Quadtel-SETUP

Boot from 1.44MB disk: Disk 1.44MB

Boot from EPROM chip silicon disk ROM on C00000 1.44MB

Boot from SRAM memory card silicon disk RAM on 800000 1.44MB

However, precondition for boot from silicon disk is the existence of a bootable silicon disk. When

leaving this SETUP window with the <ESC> key, all settings will be stored (attention: the password

will immediately be taken over and stored, if the ENTER key is pressed).

BIOS and System Programming

60 VIPA GmbH CP486 ⋅ 00/14

4.2.2 QUADTEL-BIOS Selection Menue

After leaving the VIPA-BIOS-Setup you select a menue:

Modifications of the system setups in the different windows "Setup" and "Extended BIOS-Features"

should be carried out only by experienced appliers. Normally, it is not necessary to modify any

system setups. The menue item "System Information" informs about the applied QUADTEL-BIOS.

In the menue item "System Security" a second password can be entered as a boot protection. If a

password is specified at this item, the system does not boot before this password is entered. The

menue item "Park Fixed Disks" is not required for the hard disks used. With the menue item

"Diagnostics" particular system components can be tested. The menue item "Format Fixed Disk"

offers the formatting of the hard disk, which is not allowed in the moment with the hard disks

currently used.

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 61

4.2.3 QUADTEL-BIOS-Setup

The BIOS Setup has the following setup possibilities (shown are the default setups):

In the BIOS-Setup the following system parameters can be set up:

- date

- time

- password for system startup

- type of floppy disk drive 1 (360KB, 720KB, 1.2MB, 1.44MB)

- type of floppy disk drive 2 (360KB, 720KB, 1.2MB, 1.44MB)

- type of the hard disk 1 (1 .. 47)

- type of the hard disk 2 (1 .. 47)

- type of the video interface

- size, type and system memory segmentation

- shadow-RAM for system-BIOS

- shadow-RAM for VGA-BIOS

The setup should be modified only by experienced users. Normally, it is not necessary to intervene

in the system setup.

The control keys for the SETUP are displayed in the lower part of the screen. By pressing the <F1>

key you get help information. The displayed configuration is stored with the <F10> key, you return

from the BIOS Setup to the menue with the <ESC> key.

BIOS and System Programming

62 VIPA GmbH CP486 ⋅ 00/14

4.2.4 Extended BIOS-Features

The Extended BIOS has the following additional features (shown are the default setups):

Further system parameter can be set up in the window Extended BIOS Features. The setup should

be modified only by experienced users. Normally, it is not necessary to intervene.

The control keys are displayed in the lower part of the screen. By pressing the <F1> key you get

help information. The displayed configuration is stored with the <F10> key, you return to the menue

with the <ESC> key.

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 63

4.2.5 AT ROM Diagnostics

Almost all system components can be tested via the integrated AT ROM Diagnostics:

The individual system components can be tested in the menue item "Diagnostics". The control keys

are displayed in the lower part of the screen. By pressing the <F1> key you get help information.

You leave the diagnostics window and return to the menue with the <ESC> key.

BIOS and System Programming

64 VIPA GmbH CP486 ⋅ 00/14

4.3 System Register

4.3.1 CP-Status Register (I/O-Address 280 hex - read only)

status

Bit 0 /PLC bank interrupt 0 INT 12 was triggered via PLC-access to

element 1023 in the current bank

1 no access to bank element 1023 via PLC

Bit 1 /WD reset 0 error: watchdog has announced

1 no error

Bit 2 /PFO (accu supervision) 0 CP accu voltage under 2.5V (accu empty

or defective)

1 CP accu voltage over 2.5V (accu ok)

Bit 3 reserved reserved

Bits 4 - 7 indicate settings of DIP switch S2 (boot defaults at accu failure) :

Bit 4 DIP switch S2 position 1 0 no boot from floppy disk drive

1 boot from floppy disk drive A

Bit 5 DIP switch S2 position 2 0 boot from silicon disk as disk drive A

1 boot from memory card as disk drive A

Bit 6 DIP switch S2 position 3 0 bank on PLC side not visible

1 8 banks on PLC side (32-39) visible

Bit 7 DIP switch S2 position 4 reserved

4.3.2 PLC-Status Register (I/O-Address 281 hex - read only)

Bit 0 CPKL 0 PLC has started

1 PLC in RESET mode (approx. 1.6sec)

Bit 1 BASP 0 outputs are conducted

1 outputs are deactivated

Bit 2 BAU 0 PLC battery is ok

1 PLC battery has failed

Bit 3 NAU 0 power supply connected to PLC

1 power supply for PLC is off

Bit 4 PC type (of DIP-SW) 0 PLC-135/PLC-155 set up

1 PLC-115 set up

Bit 5 reserved

Bit 6 reserved

Bit 7 reserved

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 65

4.3.3 Control Register (I/O-Address 282 hex - write only)

The bit 0 and bit 1 control the system reset:

bit 1 bit 0 reset by reset by

watchdog RES key

0 0 on off

0 1 off on

1 0 off off

1 1 on* on*

* The mode bit1 = 1 and bit0 = 1 can be used with the CP486 modules with level 2 or higher

(PCB board 5012V30 or higher)

Status

Bit 2 interrupt to PLC connected to interrupt line on back plane bus

Bit 3 bank reset off 0 bank reset at system reset

(from PCB 5012V17 on) 1 bank reset off (bank can be responded

by the PLC)

Bit 4 LED 1 0 LED off

1 LED on

Bit 5 LED 2 0 LED off

1 LED on

Bit 6 LED 3 0 LED off

1 LED on

Bit 7 LED 4 0 LED off

1 LED on

BIOS and System Programming

66 VIPA GmbH CP486 ⋅ 00/14

4.3.4 Watchdog (I/O-Address Area 270-277)

The watchdog is deactivated after system startup and after reset, and can be set on and off by means

of software.

The watchdog must be triggered every 1.6 seconds after enabling. This triggering is realized by

programming a flank. If it is not re-triggered within these 1.6 seconds, the watchdog calls a system

reset (depending on CONTROL register bit 0). The watchdog mode can be inquired by software at

any time in the CP-STATUS register.

The watchdog register is responded by I/O address 270H with following values:

watchdog on : load 40H to address 270H

watchdog off : load 50H to address 270H

trigger watchdog: load 60H to address 270H and finally

load 70H to address 270H

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 67

4.3.5 Interrupt-Management

Interrupt Initiation in the CP

The hardware interrupt IRQ12 (software interrupt 74) on the CP486 can be initiated by

- PLC access to element 1023 of respectively active bank

- BASP activation on back plane bus

The appertaining interrupt vector is filed to address 1D0 - 1D3 (hex). The initiated interrupt must be

reset by accessing the interrupt reset register (address: C000:9F8E) in the interrupt service routine.

Example: Pascal Program for Evaluation of Interrupt 12

PROGRAM INT_74_TEST;

USES CRT, DOS;

CONST EOI : BYTE = $20; { End of Interrupt acknowledgement }
PIC_1 : BYTE = $20; { Address of first Int-Controller }
PIC_2 : BYTE = $A0; { Address of second Int-Controller }

TYPE BITARRAY = ARRAY[0..7] OF BYTE;

VAR OLD_VEC : POINTER;
I : INTEGER;
STATUS,S5_STATUS,CP_STATUS : BYTE;
S5_STATUSBIT,CP_STATUSBIT : BITARRAY;
INT_AKTIVBIT : BOOLEAN;

{$F+}
PROCEDURE INT_74; INTERRUPT; { ***** INTERRUPT - Routine ************}
{$F-}

BEGIN
i:=i+1; { Increase interrupt counter }
INT_AKTIVBIT:=TRUE; { Set flag for the processing }

{ in the main program }

S5_STATUS:=PORT[$281]; { Buffer S5- and CP-register }
CP_STATUS:=PORT[$280];

PORT[PIC_1]:=EOI; { Interrupt acknowledgement to }
PORT[PIC_2]:=EOI; { both interrupt controllers }
END;

PROCEDURE HEX2BIN(STATUS:BYTE;VAR STATUSBIT:BITARRAY); { Conversion HEX --> BIN }

VAR I : INTEGER;
H1 : BYTE;

BEGIN
FOR I:=0 TO 7 DO
BEGIN
H1:=STATUS MOD 2;
IF H1<>0 THEN
STATUSBIT[I]:=1

ELSE
STATUSBIT[I]:=0;

STATUS:=STATUS DIV 2
END;

END;

PROCEDURE FEHLER;

BIOS and System Programming

68 VIPA GmbH CP486 ⋅ 00/14

BEGIN
GOTOXY(1,10);
WRITE('INTERRUPT 12 was not initiated by PLC ')

END;

PROCEDURE BASP_INT;
BEGIN
GOTOXY(1,10);
WRITE('INTERRUPT 12 was not initiated by BASP ')

END;

PROCEDURE KACHEL_INT;
BEGIN
MEM[$C000:$9F8E]:=0; { Reset interrupt by accessing }

{ the interrupt reset register }
GOTOXY(1,10);
WRITE('INTERRUPT 12 was initiated by PLC via bank access ')

END;

PROCEDURE INT_ANZAHL;
BEGIN
GOTOXY(1,1);
WRITE('Number of initiated INTERRUPTs :',I);

END;

PROCEDURE INT_AKTIV;
BEGIN
INT_AKTIVBIT:=FALSE;
HEX2BIN(S5_STATUS,S5_STATUSBIT); { HEX --> BIN - conversion }
HEX2BIN(CP_STATUS,CP_STATUSBIT);

IF (S5_STATUSBIT[1]<>0) THEN
BASP_INT { INT via BASP signal }

ELSE BEGIN
IF (CP_STATUSBIT[0]=0) THEN { INT via S5-bank access }
KACHEL_INT

ELSE { another hardware interrupt }
FEHLER;

END;
END;

BEGIN {*********** MAIN ******************}

CLRSCR;
I:=0; { Preset counter }
INT_AKTIVBIT:=FALSE;
PORT[PIC_2+1]:=PORT[PIC_2+1] and $EF; { Enable interrupt 12 }
GETINTVEC($74,OLD_VEC); { Save old IRQ 12-vector, }
SETINTVEC($74,@INT_74); { and refer to own Int-routine }
gotoxy(1,24);
write(' Interruption with optional key ');

REPEAT
INT_ANZAHL; { Output current Int-number }
IF INT_AKTIVBIT THEN INT_AKTIV { Is there an Interrupt ? }

UNTIL KEYPRESSED;

SETINTVEC($74,OLD_VEC); { Recover old Int-vector }
PORT[PIC_2+1]:=PORT[PIC_2+1] or $10; { Disable interrupt 12 }

END.

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 69

4.3.6 CMOS-RAM Statusbyte (CMOS-RAM Address 4E)

CMOS-RAM used contains additional memory areas from 40 to 4F. These memory areas are used

by VIPA for BIOS-extensions and for the VIPA-SETUP, and are protected by a checksum. The user

is not allowed to make any changes in this RAM area.

Byte 4E - the VIPA-CMOS status byte - is excepted herefrom. It is assigned as follows:

Bit 0 0 system date and system time are ok

1 system date and system time are lost

Bit 1 0 system configuration is ok

1 system configuration lost, default table was loaded

Bit 2-6 vacant

Bit 7 0 must be set to 0

Procedure:

CP486 always boots also in the case of lost system configuration (discharged battery) because of the

extensions in the VIPA-BIOS. The exact system configuration can be reloaded by DOS, excepted

date and time. These two parameters must be input by the operator in any case if the configuration is

lost. For this purpose, bit 0 in the VIPA-CMOS status register is used. This bit can be inquired and

set by the operator also on standard language level.

The operator is allowed to access to bit 0 and to set this bit to 1 if he has corrected date and time.

This byte is not supervised by the checksum control.

BIOS and System Programming

70 VIPA GmbH CP486 ⋅ 00/14

4.3.7 ROM-SETUP

VIPA-BIOS enables an ROM-SETUP. In this case, CMOS-RAM is only used to buffer date and

time. The proper system SETUP is filed in the system EPROM.

Table for ROM-SETUP is stored in the BIOS-EPROM in the addresses F000:7800 to F000:784E

(hex). This table contains as a standard the SETUP table in case of battery failure.

Address F000:784F (hex) includes a control flag having following functions:

FF For system startup, SETUP from CMOS-RAM is used. Only in the

case of a battery failure the SETUP in ROM is used together with

the settings of the DIP-switch S2

00 ROM-SETUP is always used to start up the system. A SETUP change

is possible then only by exchanging the BIOS-EPROM.

(For customer's specific SETUPs please ask VIPA)

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 71

4.3.8 Bank Interface

4.3.8.1 Operating Modes of Bank Interface

The bank interface on the CP486 consists of a 8 KByte RAM memory, which can be written or read

from the PLC as well as from the CP side. Memory access and memory size are adjusted via

registers on the CP486 side. Following operating modes are available:

Operating Banks via Bank Selection Register:

In this mode of operation the individual banks are selected via the bank select register on the PLC

side. The bank select register (address 0FEFF(hex)), has a width of 8 bytes and this way supports

256 bank numbers. In this mode the interrupt to the CP3/4 is released, as soon as a write access to

the highest bank byte from the SPS ensues. (Annotation: This mode can only be utilized in address

area 0Fxxx(hex) on the PLC side.)

Operating Banks via the Highest Bank Address:

In this mode of operation the individual banks are selected each via the highest bank byte of the

current bank on the PLC side. So the highest byte of each bank has two functions in this mode of

operation: If the data bit 7 equals 0 during writing, a bank 0..127 (corresponding to the data bits

0..6) will be selected. If bit 7 is set to 1, the bank will not be switched but the value will be stored in

the highest bank byte and an interrupt on the CP486 will be released. When the highest bank byte is

read, always the contents will be returned (annotation: in this mode of operation only 128 bank

numbers are available).

Linear Operation

In linear mode of operation a bank is available to th PLC. A selection of banks is not possible. In

this mode of operation the ident register must have a value of 0 and the number of banks has to be

set to 1. In this mode of operation an interrupt will also be initiated during write access of the PLC

to the highest bank address.

During starting up of the system the BIOS adjusts the default bank operating. In this adjustment 8

banks with a size of 1KByte each are available on the PLC side. The 8 banks are located directly

one after another and will be selected from the PLC via the bank select register. The bank numbers

can be adjusted in the SETUP of the CP486. These 8 banks are available as large continuous

8 KByte memory area on the CP486 side.

For different configurations the registers have to be reparameterized on the CP486 side

correspondingly. These registers are set up the following way:

BIOS and System Programming

72 VIPA GmbH CP486 ⋅ 00/14

4.3.8.2 Bank Interface Registers

The registers must be written in the following order:

Ident register (C800:1F80)

Bank initial register 1 (C800:1F84)

Bank initial register 2 (C800:1F86)

Configuration register (C800:1F82)

Interrupt reset register (C800:1F8E)

Ident Register (Address 0C9F80H):

By means of this register the bank numbers are set up to which the bank interface on PLC side is

responding. If using more than a bank, the entered value must correspond to the each highest bank

number. During the linear operation the value 0 must be transferred.

The register has a width of 8 Bit.

Example 1: eight banks 07 (hex) programming on bank 00 .. 07 (hex)

27 (hex) programming on bank 20 .. 27 (hex)

Example 2: two banks 01 (hex) programming on bank 00 .. 01 (hex)

85 (hex) programming on bank 84 .. 85 (hex)

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 73

Bank Initial Register 1 / 2 (Address 0C9F84H / 0C9F86H)

The start address of the bank on the SPS side is set via the bank start register. The bank start address

must be a multiple of the bank size. Moreover it has to be checked, whether the address area is

available resp. free at the back plane bus. For the PLC-135 only addresses in the area Fxxx(hex) are

possible. For operation of the banks with the bank select register FEFF(hex) the start address must

be located in the area of F000(hex)-FFFF(hex). The start address is adjusted via the bank start

register 1 and 2 in the following way:

Bank initial address register 1:

Bit 7 6 5 4 3 2 1 0

Comparing address bit A11 A10 A9 A8 A7 A6 A5 A4

Bank initial address register 2:

Bit 7 6 5 4 3 2 1 0

Comparing address bit 0 0 0 0 /A15 /A14 /A13 A12

Attention: A15, A14, A13 must be input inverted (/Axx).

Example: For the bank initial address F400(hex) following values are required:

- bank initial register 1: value = 40(hex)

- bank initial register 2: value = 01(hex)

BIOS and System Programming

74 VIPA GmbH CP486 ⋅ 00/14

Configuration Register (Address 0C9F82H)

The configuration register is used to configure the number of banks, bank size and mode of the bank

operation. Programming of this register approves the bank inerface for implementation towards PLC

side.

Assignment:
Bit 7 6 5 4 3 2 1 0

L2 L1 L0 CP Lin K2 K1 K0

bank length
0 0 0 64 KByte
0 0 1 16 Byte
0 1 0 32 Byte
0 1 1 64 Byte
1 0 0 128 Byte
1 0 1 256 Byte
1 1 0 1 KByte
1 1 1 8 KByte

bank-operated
0 0 linear, no bank addressing
0 1 bank-operated via upper bank address
1 0 CP bank-operated via address D7DFEH
1 1 not allowed

number of banks
0 0 0 1 bank
0 0 1 2 banks
0 1 1 4 banks
1 1 1 8 banks

Annotation: The maximal RAM-size on the CP486 amounts to 8KByte.

For linear operation the number of banks must be set to 1.

Reset Interrupt Register (Address 0C9F8EH)

An PLC access to the last bank byte (in the case of 1KByte bank size at element 1023) triggers the

hardware interrupt 12 (software interrupt 74) at the CP486. The appropriate vector is filed in the

addresses 1D0-1D3. Concerning the operating mode bank operation via highest bank address it has

to be noted that bit 7 of the written date must have the value 1in order to address the bank byte (see

also section 4.3.8.1)

The interrupt has to be reset in the corresponding interrupt service routine by a write access to the

interrupt reset register (address C800:1F8E (hex)). The interrupt is automatically reset in the case of

a hardware reset.

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 75

4.3.8.3 Configuration Example: Standard CP BankOperation (8 Banks with each 1KByte)

Configuration:

Number of banks: 8

Bank capacity: 1024 Byte

PLC initial address of the bank: F400(hex) (Note: the initial address must be

in the Fxxx(hex) range)

Specified bank numbers: 8 .. 15 (Note: first number must be a multiple

of the number of banks.)

Bank selection in the PLC: Bank select register FEFF(hex)

Register parameterization:

Ident register (C800:1F80): 0Fhex

Bank initial register 1 (C800:1F84): 40hex

Bank initial register 2 (C800:1F86): 01hex

Configuration register (C800:1F82): D7hex

Interrupt reset register (C800:1F8E): 00hex

Interrupt in the CP486:

In the CP486 an interrupt is initiated by an PLC write access to the highest

bank element at address F7FF(hex).

Address assignment:

Bank PLC address CP486 address

8 F400 - F7FF C800:3C00 - C800:3FFF

9 F400 - F7FF C800:3800 - C800:3BFF

10 F400 - F7FF C800:3400 - C800:37FF

11 F400 - F7FF C800:3000 - C800:33FF

12 F400 - F7FF C800:2C00 - C800:2FFF

13 F400 - F7FF C800:2800 - C800:2BFF

14 F400 - F7FF C800:2400 - C800:27FF

15 F400 - F7FF C800:2000 - C800:23FF

BIOS and System Programming

76 VIPA GmbH CP486 ⋅ 00/14

4.3.8.4 Configuration Example: Bank Operation (4 Banks with each 64 Byte)

Configuration:

Number of banks: 4

Bank capacity: 64 Byte

PLC initial address of the bank: F500(hex) (Note: the initial address must be

in the Fxxx(hex) range)

Specified bank numbers: 16..19 (Note: the first number must be multiple

of the number of banks.)

Bank selection in the PLC: Bank select register FEFF(hex)

Register parameterization:

Ident register (C800:1F80): 13(hex) (corresponds to the highest bank number)

Bank initial register 1 (C800:1F84): 50(hex)

Bank initial register 2 (C800:1F86): 01(hex)

Configuration register (C800:1F82): 73(hex)

Interrupt reset register (C800:1F8E): 00(hex)

Interrupt in the CP486:

In the CP486 an interrupt is initiated by an PLC write access to the highest

bank element at address F53F(hex).

Address assignment:

Bank PLC address CP486 address

16 F500 - F53F C800:3C00 - C800:383F

17 F500 - F53F C800:3800 - C800:383F

18 F500 - F53F C800:3400 - C800:343F

19 F500 - F53F C800:3000 - C800:303F

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 77

4.3.8.5 Configuration Example: Bank Operation via Highest Bank Address

Configuration:

Number of banks: 8

Bank capacity: 256 Byte

PLC initial address of the bank: 0000(hex)

Specified bank numbers: 80 .. 87 (Note: the first number must be a multiple

of the number of banks.)

Bank selection in the PLC: highest bank byte 00FF(hex) with data bit 7 to 0 (If data

bit 7is set to 1, the bank element itself is responded)

Register parameterization:

Ident register (C800:1F80): 57(hex) (corresponds to the highest bank number)

Bank initial register 1 (C800:1F84): 00(hex)

Bank initial register 2 (C800:1F86): 0E(hex)

Configuration register (C800:1F82): AF(hex)

Interrupt reset register (C800:1F8E): 00(hex)

Interrupt in the CP486:

In the CP486 an interrupt is initiated by an PLC write access to the highest

bank element at address 00FF(hex).

Address assignment:

Bank PLC address CP486 address

80 0000 - 00FF C800:3C00 - C800:3CFF

81 0000 - 00FF C800:3800 - C800:38FF

82 0000 - 00FF C800:3400 - C800:34FF

83 0000 - 00FF C800:3000 - C800:30FF

84 0000 - 00FF C800:2C00 - C800:2CFF

85 0000 - 00FF C800:2800 - C800:28FF

86 0000 - 00FF C800:2400 - C800:24FF

87 0000 - 00FF C800:2000 - C800:20FF

BIOS and System Programming

78 VIPA GmbH CP486 ⋅ 00/14

4.3.8.6 Configuration Example: Linear Operation

Configuration:

Number of banks: 1 (In the linear operation only 1 bank is possible)

Bank capacity: 8 KByte

PLC initial address of the bank: 8000(hex)

Specified bank numbers: 0 (Note: for linear operation the bank number must be 0)

Bank selection in the PLC: not possible

Registerinhalte:

Ident register (C800:1F80): 00(hex) (corresponds to the highest bank number)

Bank initial register 1 (C800:1F84): 00(hex)

Bank initial register 2 (C800:1F86): 06(hex)

Configuration register (C800:1F82): E0(hex)

Interrupt reset register (C800:1F8E): 00(hex)

Interrupt in the CP486:

In the CP486 an interrupt is initiated by an PLC write access to the highest

bank element at address 9FFF(hex).

Address assignment:

Bank PLC address CP486 address

0 8000 - 9FFF C800:2000 - C800:3FFF

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 79

4.4 Address Assignment, Interrupts and DMA Channels

4.4.1 Memory Address Assignment

000000 - 09FFFF 640KB DRAM main memory

0A0000 - 0BFFFF 128KB screen memory

0C0000 - 0C7FFF 32KB VGA-BIOS

0C8000 - 0C9FFF 8KB bank interface register area

ident register: C9F80

conf. register: C9F82

bank register 1: C9F84

bank register 2: C9F86

reset int-register: 0C9F8E

0CA000 - 0CBFFF 8KB bank interface data area

0CC000 - 0CFFFF 16KB reserved

0D0000 - 0D7FFF 64KB usable for

- EMS

- AT-bus additional modules

- special functions

0E0000 - 0FFFFF 128KB diagnostic, SETUP, AT-BIOS, Vipa-Utilities,

driver

100000 - 15FFFF expanded memory for 1Megabyte modules

45FFFF for 4Megabyte modules

.. - 7FFFFF usable for

- additional silicon disk board

- AT-bus additional modules

800000 - BFFFFF 4MB memory card silicon disk (optional up to 4MB)

C00000 - DFFFFF 2MB chip silicon disk (optional up to 2MB)

FE0000 - FFFFFF 128KB diagnostic, SETUP, AT-BIOS, Vipa-Utilities,

driver

BIOS and System Programming

80 VIPA GmbH CP486 ⋅ 00/14

4.4.2 I/O Address Assignment

000-01F DMA controller 1

020-03F interrupt controller 1

040-05F timer 8254

060 keyboard controller

061 port B register, PPI, 8255

062-06F keyboard controller

070-07F real time clock and CMOS-RAM, NMI mask

080-08F DMA page register

090-091 DMA map register

092 alternate gate A20 and hot reset

093-09F DMA map register

0A0-0BF interrupt controller 2

0C0-0DF DMA controller 2

0F0 clear math coprocessor busy

0F1 reset math coprocessor

0F8-0FFmath coprocessor

102-104 VGA controller

1EC-1EF HT21 EMS- and control register

1F0-1F8 hard disk

270-277 backup logic and watchdog

278-27F LPT2

280 VIPA CP status register

281 VIPA-PLC status register

282 VIPA control register

283-28F reserved for VIPA register

2E8-2EF COM4

2F8-2FF COM2

378-37B LPT1 (applicable after corresp. conf. of Combo)

3B0-3BB VGA controller

3BC-3BF LPT1

3C0-3DF VGA controller

3E8-3EF COM3

3F0-3F7 FD controller

3F8-3FF COM1

46E8 VGA controller

BIOS and System Programming

CP 486 ⋅ 00/14 VIPA GmbH 81

4.4.3 Interrupt Assignment

IRQ0 timer output 0

IRQ1 keyboard (output buffer full)

IRQ2 interrupt of interrupt controller 2 (IRQ8-IRQ15)

IRQ3 COM2

IRQ4 COM1

IRQ5 COM3

IRQ6 FD controller

IRQ7 LPT1

IRQ8 real time clock

IRQ9 VGA / VIPA additional board

IRQ10 reserved for VIPA additional board

IRQ11 reserved for VIPA additional board

IRQ12 interrupt from PLC (bank interrupt and BASP interrupt)

IRQ13 coprocessor

IRQ14 hard disk

IRQ15 COM4

BIOS and System Programming

82 VIPA GmbH CP486 ⋅ 00/14

4.4.4 Assignment of DMA Channels

CH0 -

CH1 -

CH2 FD controller

CH3 -

CH4 cascading for controller 1

CH5 -

CH6 reserved for VIPA additional board

CH7 -

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 83

5. Utility Software for MS-DOS

It is recommended to use MS-DOS 4.01 or MS-DOS 5.0 as operating system. Setting up and further

description for this operating system is described in the accompanying manuals of Microsoft resp. in

supplementary documentation of the publishing house MARKT UND TECHNIK and DATA

BECKER. Informations concerning internal system functions can be

found in the book PC INTERN of the publishing house DATA BECKER.

Concerning the operation systems MS-DOS 3.3, MS-DOS 4.01 and MS-DOS 5.0 VIPA developped

utilities and tools for the operation of the CP486. Software described in chapters 5.1 up to 5.4 is

included on VIPA disk CP3-SW593. The QUADTEL software (chap. 5.5 and 5.6) is part of disk

CP3-SW583.

Utility Software for MS-DOS

84 VIPA GmbH CP486 ⋅ 00/14

5.1 MS DOS Utilities for Silicon Disk Operation

5.1.1 Silicon Disk Driver

The BIOS contains driver functions for operating and usage of standard hardware components.

Additional or modified hardware has also to be operated by drivers. For fear that every small system

change requires to set up a new BIOS, MS-DOS offers the possibility to couple additional drivers to

the BIOS. This happens by means of an entry in the file CONFIG.SYS.

For the CP486 there are several silicon disks available:

- chip silicon disk (IC3, IC4):

The chip silicon disk has a capacity of 256KB resp. 1MB. The chip silicon disk can be

assembled with SRAM, EPROM and PEROM.

- memory card silicon disk

memory cards have a capacity of 128KB, 512KB and 1MB. There are OTP-ROM- and SRAM

memory cards available.

- silicon disk addtional board

The different additional boards have a capacity up to 7MB and are available with the

component parts FLASH-, SRAM- and EPROM.

In order to respond to the silicon disks as drives, the corresponding driver has to be entered in the

system configuration file CONFIG.SYS.

Several drivers are available:

SDRAM.SYS driver for SRAM silicon disk

The driver enables to read or write silicon disks.

SDROM.SYS driver for EPROM-, FLASH-PROM- and OTP-ROM silicon disks

This driver enables nothing but read.

SDPEROM.SYS driver for silicon disks with EEPROM modules

(This silicon disk can be read and written. However the durability of

EEPROMs depends strongly on the number of write cycles (1000 up to 10000

according to type). Therefore it is recommended to install this driver just short-

term to fill the EEPROMs with data, or modify data. Following the driver

SDROM.SYS should be used to prevent write accesses.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 85

The corresponding driver is installed in the file CONFIG.SYS by the following command:

device=[d:][path]SDxxx.SYS [remark][/bb][remark][/llll][remark][/pp]

The particular parameters have the following function:

[c:][path] drive and path specification with driver SDxxx.SYS, whereby xxx

indicates the memory type being used for the silicon disk. The three

described drivers SDRAM, SDROM and SDPEROM are available.

[remark] optional text excluded the slash "/" and entry key

/bb base address of the silicon disk (step ratio = 64 kByte)

(e.g. /C0 corresponds to the physical start address C00000hex)

/llll capacity of the silicon disk (step ratio = 1 KByte)

(e.g. /256 corresponds to a disk capacity of 256 KByte = 262144 Byte)

/pp parameter for SDPEROM.SYS: block size of PEROMS

64 for AT29MC010 module

128 for AT29C010 and for AT29MC040 module

256 for AT29MC040 module

Examples:

Chip Silicon Disk with 1MB EPROM:

DEVICE = \DEVICE\sdrom.sys base address=/c0 size=/1024

Explanation: The driver is in the subdirectory "DEVICE" on the boot drive. The silicon disk

consists of a read-only memory. Therefore, the driver SDROM.SYS is taken. The

base address of the silicon disk lies at C00000H. The silicon disk has a capacity of

256 KByte.

Chip Silicon Disk with 256KB SRAM:

DEVICE = \DEVICE\sdram.sys base address=/c0 size=/256

Explanation: The driver is in the subdirectory "DEVICE" on the boot drive. The silicon disk

consists of a write-only memory. Therfore, the driver SDRAM.SYS is taken. The

base address of the silicon disk lies at C00000H. The silicon disk has a capacity of

1024 KByte = 1 MByte

Utility Software for MS-DOS

86 VIPA GmbH CP486 ⋅ 00/14

Memory Card Silicon Disk with 1MB ROM:

DEVICE = \DEVICE\sdrom.sys base address=/80 size=/1024

Explanation: The driver is in the subdirectory "DEVICE" on the boot drive. The silicon disk

consists of a read-only memory. Therefore, the driver SDROM.SYS is taken. The

base address of the memory card slot is 800000H. The silicon disk has a capacity of

1024 KByte = 1MB.

Memory Card Silicon Disk with 128KB SRAM:

DEVICE = \DEVICE\sdram.sys base address=/80 size=/128

Explanation: The driver is in the subdirectory "DEVICE" on the boot drive. The silicon disk

consists of a write-only memory. Therefore, the driver SDRAM.SYS is taken. The

base address of the memory card slot is 800000H. The silicon disk has a capacity of

128 KByte.

Annotation:

If the silicon disk has already been activated in the VIPA-SETUP, an entry in the CONFIG.SYS file

is not necessary! In this case, the disk has already been assigned the drive identification A:. An

additional entry in the CONFIG.SYS file would assign a second disk drive identification.

Several silicon disks can be installed by repeating the statement in the file CONFIG.SYS with the

corresponding changes of the parameters. In this manner a physically coherent address area can be

seperated in several logical silicon disk drives.

The operating system installs all drivers in the file CONFIG.SYS. On this occasion a drive

specification is assigned to every storage media (e.g. D: oder E: and so on). This drive specification

will be displayed on the screen during start up as a message.

Every virtual drive will expand the resident part of DOS at about 600 bytes for the driver.

SRAM silicon disks have to be intitialized by the program FORMATSD. If the RAM disk is battery

or accumulator buffered, this has to take place just once, otherwise after every start of the system.

On buffered RAM disks data will be maintained even after switching off the system for a certain

period (see specification).

Buffered RAM disks are bootable, if an operating system is installed on the disk.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 87

5.1.2 Formatting Program for SRAM Silicon Disk

Similar to a disk SRAM silicon disks have to be formatted before they are usable as storage media

under DOS. The program FORMATSD.EXE serves to format the silicon disk. Under MS-DOS the

program is called as follows:

[c:][path]FORMATSD d:[/D:xx][/S]

The particular parameters have the following function:

[c:][path] specification of drive and path with the FORMATSD-command file

d: specification of the silicon disk drive, which is to be formatted

/D:xx this parameter specifies, how much space is to be reserved for directory entries.

xx can take values between 1 and 99. If this parameter is missing, space for 64

directory entries will be reserved.

/S by means of this parameter the operating system files of the MS-DOS boot

drive will be copied to the new silicon disk. This is necessary, if the new silicon

disk should be bootable.

Attention:

This program deletes all data on the specific drive!

The program FORMATSD has to be executed before other programs or system commands (e.g.

DIR) access the silicon disk drive to be formatted. If this is disregarded, it might happen that the

silicon disk drive will not be formatted with the desired size.

Utility Software for MS-DOS

88 VIPA GmbH CP486 ⋅ 00/14

5.1.3 Silicon Disk Generator

With the program SDGEN binary files for the EPROMs, FLASH-PROMS and PEROMS of the

program storage are generated. The program is called in the following way:

[c:][path] SDGEN

The program requires the following parameters:

EPROM size in bit(0,512,1M,2M,4M,8M):

The size of the EPROMs is to be specified (e.g. 1M for

EPROM 27C010). Files of the appropriate size will be generated for a

EPROM programming device. If a value of 0 is entered, one single file

will be created, in the way SDLOAD needs.

split (Y/N) Split files are required for 16 bit silicon disks. The silicon disk of the

CP486 has a width of 16 bit, the memory card has a width of 8Bit. In the

silicon disk with a width of 16 bit 2 EPROMS (odd and even byte) are

always parallel.

source drive created mother drive for the silicon disk

target file name file name for the binary files for EPROM programming

Corresponding to the EPROM size several binary files are generated with the specified target file

name. The extension of single files is provided with a subsequent number (target file name.xxx). In

the case of splitted files, ODD- and EVEN files are marked by an O or an E in the first character of

the extension (target file name.Oxx or target file name.Exx).

Attention:

If a bootable silicon disk is to be generated by means of MS-DOS-Ramdisk RAMDRIVE.SYS, first

the label must be removed from this RAM-disk by means of the system program LABEL.

Accordingly, the operating system files (IO.SYS, MSDOS.SYS and COMMAND.COM) must be

copied to the empty RAM-disk before the other files of the user. Then SDGEN must be applied. If

the data are to be transmitted via SDLOAD, a large file has to be generated with SDGEN which is

loaded then with SDLOAD. Direct transfer of the MS-DOS-Ramdisk with SDLOAD does not

function in this case. The temporary file is always required!

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 89

5.1.4 Silicon Disk Loader

The program SDLOAD.EXE is used to load the silicon disk with the prepared data records. This

loader must be applied for FLASH-PROMs and for PEROMs. FLASH-PROMs can only be deleted

complete and are also completely written again with this program. For PEROMs the number of

write cycles is very restricted. When transferring files with a standard DOS copy program, certain

sectors, especially in the directory area, would be very often re-written, through which the durability

of the components would be reduced very. Also in this case a complete data transfer, where every

sector is written only once, is efficient.

The program SDLOAD is called in MS-DOS as follows:

[c:][path]SDLOAD

whereby in [c:][path] are included the drive and the path of the SDLOAD program.

After the program call, the following list of components is displayed on the screen.

Following FLASH-PROMs or EEPROMs/PEROMs can be programmed:

1 Am28F010-150,P28F010-150

2 Am28F020-150,P28F020-150

3 Am28F040-150,P28F040-150

4 AT28C010-150

5 AT28C040-150

6 AT29C010-150

7 AT29C040-150

8 AT29MC010-150

9 AT29MC040-150

Please give the number of the ROM type used by you:

The inserted components must be selected by entering the number and pressing the enter key.

Following, the number of components involved is inquired:

Please enter the number of modules shown above (2, 4, 6 or 8):

The corresponding number of pieces must be input and the enter key actuated.

Utility Software for MS-DOS

90 VIPA GmbH CP486 ⋅ 00/14

Then the base address is inquired where the silicon disk board is to be applied. This address is

entered as hexadecimal address:

Possible input values are: 800000

840000

880000

...

FC0000

Either the file contents generated with SDGEN or the contents of of a logical drive can be

transferred now to the silicon disk. If the contents of a file has to be transferred, the file name must

be entered. If the contents of a drive has to be transferred, only the drive label is specified.

File names are specified in the following format: [d:][path]file name

Drive labels are entered in the following format: d:

When specifying a file, this must have been generated with SDGEN in such a manner that the

complete drive contents is stored to only one file. The file is named then e.g.: SDISK.000

The drive to be programmed must have the same or larger capacity than the source file or the source

drive.

Attention:

SDLOAD copies the drive or the specified file without any changes. A drive being not bootable is

also non-bootable after it has been copied with SDLOAD. Concerning one case, a file must first be

created with SDGEN.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 91

5.1.5 Examples for Applying the Silicon Disk

5.1.5.1 Example for Generating a SRAM-Disk:

Goal: On the base address C0 0000hex, an SRAM silicon disk with a capacity of 256KB

(consisting of two 128KByte SRAMs (1MBit SRAMs)) should be generated.

The base board is to be assembled with 2 SRAMs each of 128KByte-chips and the jumpers set up

adequate (see HW-description of the base board).

The system is booted from hard disk (drive C:). The programs SDRAM.SYS, FORMATSD.EXE

(in the subdirectory C:\SD) and a text editor are required for the generation.

The following lines are input at the end into the file C:\CONFIG.SYS via the text editor:

DEVICE = C:\SD\SDRAM.SYS base=/C0 size=/256

The system is re-started by pressing at the same time the keys <CTRL>, <ALT> and .

At the runup, the system outputs i.a. the following messages:

SILICON DISK installed as drive D: . Vx.x date

RAMDISK STARTED WITH ADDRESS C0 0000H

Thus, the drive is present and has to be formatted by means of the following call:

C:\SD\FORMATSD D: /D:32 /S

The program FORMATSD.EXE sets up now a DOS-structure at the drive D: (SRAM-disk). In

doing so, space for 32 main directory entries is reserved. If the program has formatted the data

memory without error messages, this can be responded as MS-DOS drive. The system files are

transferred to the SRAM-disk by means of the parameter /S. Thus the SRAM-disk can be used as

boot drive.

Utility Software for MS-DOS

92 VIPA GmbH CP486 ⋅ 00/14

5.1.5.2 Example for Generating a FLASH-PROM Silicon Disk

Goal: On the base address C0 0000hex, an FLASH-PROM silicon disk with a capacity of

1MByte (consisting of four 256KByte FLASH-PROMs (2MBit FLASH-PROMs))

should be generated.

A silicon disk board with four 256KByte FLASH-PROMs (2MBit FLASH-PROMs) and two

512KByte SRAMs (4MBit SRAMs) is used. The base address of the FLASH-PROM disk is set to

C0 0000 hex and to a length of 1MB. The base address of the SRAM-disk is set to 80 0000 hex and

also to a length of 1 MB.

The system is booted from hard disk (drive C:). The programs SDROM.SYS, SDRAM.SYS,

FORMATSD.EXE and SDLOAD.EXE (in the subdirectory C:\SD) and a text editor are required for

the generation.

The following lines are input at the end into the file C:\CONFIG.SYS via the text editor:

DEVICE = C:\SD\SDRAM.SYS base=/80 size=/1024

DEVICE = C:\SD\SDROM.SYS base=/C0 size=/1024

The system is re-started by pressing at the same time the keys <CTRL>, <ALT> and .

At the runup, the system outputs i.a. the following messages:

SILICON DISK installed as drive D: . Vx.y date

RAMDISK STARTED WITH ADDRESS 80 0000H

SILICON DISK installed as drive E: . Vx.y date

ROMDISK STARTED WITH ADDRESS C0 0000H

In drive D: (SRAM disk) a master for the program memory is generated. For this purpose, the

SRAM-disk must first be formatted by means of the following command:

SD\FORMATSD D: /D:32 /S

Following all the files required on the FLASH-PROM disk are copied to this drive D:. Thus, the

master for the FLASH-PROM disk generated and can also be tested. For this, the silicon disk must

be selected on base address 80 0000H in the Setup.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 93

For transferring purposes of this master to the FLASH-PROM disk, the program SDLOAD is called

and the following parameters are entered:

C:\SD\SDLOAD

Following FLASH-PROMs or EEPROMs/PEROMs resp. can be programmed:

1 Am28F010-150,P28F010-150

2 Am28F020-150,P28F020-150

3 Am28F040-150,P28F040-150

4 AT28C010-150

5 AT28C040-150

6 AT29C010-150

7 AT29C040-150

8 AT29MC010-150

9 AT29MC040-150

Please enter the number of the ROM type used by you: 2

Please enter the number of modules specified above

(2,4,6,8): 4

Please enter which base address you have set up on the silicon disk board.

Entry as hexadecimal value: C00000

Either the contents of a file generated with SDGEN or the contents of a

logic drive can be transferred to the silicon disk.

Please enter the file name or the drive label:

D:

The contents of drive D: is transferred now to the FLASH-PROMs. If the program has finished

without errors, the FLASH-PROM disk can be responded as drive E:. The contents of drive D: and

E: is the same. But the drive E: is write-protected. If the silicon disk is set to address

C0 0000hex as drive A: in the BIOS-Setup, then this silicon disk can also be used for booting.

Utility Software for MS-DOS

94 VIPA GmbH CP486 ⋅ 00/14

5.1.5.3 Example for Generating a Program Memory with EPROMs:

Goal: An EPROM silicon disk is to be generated using two 512KByte EPROMs.

For this purpose, an SRAM disk with two 512KByte SRAMs (4MBit SRAMs) is installed on the

base board. The base board is to be assembled correspondingly and the jumpers set up accordingly

(see HW-description of the base board). C0 0000hex is set up as base address.

The system is booted from hard disk (drive C:). The programs SDROM.SYS, SDRAM.SYS,

FORMATSD.EXE (in the subdirectory C:\SD) and a text editor are required for the generation.

The following lines are input at the end into the file C:\CONFIG.SYS via the text editor:

DEVICE = SD\SDRAM.SYS base=/C0 size=/1024

The system is re-started by pressing at the same time the keys <CTRL>, <ALT> and .

At the runup, the system outputs i.a. the following messages:

SILICON DISK installed as drive D:. Vx.y date

RAMDISK STARTED WITH ADDRESS C00000H

In drive D: (SRAM disk) a master for the program memory is generated. For this purpose, the

SRAM-disk must first be formatted by means of the following command:

SD\FORMATSD D: /D:32 /S

Following all the files required on the EPROM disk are copied to this drive D:. Thus, the master for

the EPROM disk is generated and can also be tested. For this, the silicon disk ROM must be

selected on address C00000 in the Setup and the line

DEVICE = SD\SDRAM.SYS base=/C0 size=/1024

must be deleted in the file CONFIG.SYS.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 95

From this master now files for the two EPROMs must be generated. Therfor the program SDGEN is

called up and the following parameters are entered:

C:\SD\SDGEN

EPROM-SIZE in Bit (0,512,1M,2M,4M,8M): 4M

SPLITTED IN ODD-EVEN (Y/N): Y

SOURCE DRIVE (A: F:) : D:

TARGET-FILE NAME (max. 8 char.) : EPROM

The program generates the files EPROM.O00 and EPROM.E00. Hereby it refers to binary files for

the EPROM programming device. Every file belongs to an EPROM. These EPROMs are to be

programmed. Accordingly the SRAMs are removed from the silicon disk bases, and the

programmed EPROMs installed into the silicon disk bases as follows:

EPROM.E00 in IC4 (even)

EPROM.O00 in IC3 (odd)

After the restart and boot, the storage media generated in the moment is available as drive E:.

If the silicon disk ROM is set to address C0 0000hex as drive A: in the BIOS-Setup, then this

program memory can also be used for booting.

Utility Software for MS-DOS

96 VIPA GmbH CP486 ⋅ 00/14

5.1.5.4 Example for Generating a ROM-Silicon Disk with FLASH-PROMs
by Means of the MS-DOS-RAM-Disk:

Goal: On the silicon disk board, an FLASH-PROM silicon disk with a capacity of 2MByte

(consisting of eight 256KByte FLASH-PROMs (2MBit FLASH-PROMs) should be

generated started with the base address C0 0000hex.

A silicon disk board with eight 256KByte FLASH-PROMs (2MBit FLASH-PROMs) is used.

The base address is set to C0 0000 hex and to a length of 2MB.

The system is booted from hard disk (drive C:). The programs SDROM.SYS, SDGEN.EXE and

SDLOAD.EXE (in the subdirectory C:\SD) and a text editor are required for the generation.

The following lines are input at the end into the file C:\CONFIG.SYS via the text editor:

DEVICE = C:\DOS\RAMDRIVE.SYS 2024 512 64 /E

DEVICE = C:\SD\SDROM.SYS base=/C0 size=/2048

The system is re-started by pressing at the same time the keys <CTRL>, <ALT> and .

At the runup, the system outputs i.a. the following messages:

Microsoft RAMDrive Version x.y - virtual drive D:

disk size: 2042K

sector size: 512 Byte

block size: 1 sector

directory entries: 64

ROM SILICON DISK installed as drive E:. Vx.y date

The drive D: is used as master for the ROM silicon disk. For this purpose, first the label must be

removed as this occupies a space required by the operating system. The respective command is:

LABEL D:

Then the following message is displayed:

data medium in drive D is MS-RAMDRIVE

data medium label (11 characters, ENTRY KEY for none)?

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 97

No data medium label is entered but only the enter key is actuated. Then the question appears:

Delete current data medium label (Y/N)?

This question is acknowledged with "Y" and the enter key.

After this the program LABEL is finished (MS-DOS-Prompt). Next, all required files are copied to

the drive D: (adhere following order if the drive should be bootable):

1. Io.sys

2. Msdos.sys

3. command.com

4. remaining files and directories in optional order

Attention: The files Io.sys and Msdos.sys are hidden files and thus, cannot be transferred via the

DOS-command COPY. It is possible to transfer them e.g. by mean of DOSSHELL or the Norton

Commander. Thus the master for the program memory is generated, and the program SDGEN is

called up next with following parameters:

C:\SD\SDGEN

EPROM-SIZE in Bit (0,512,1M,2M,4M,8M): 0

SPLITTED IN ODD-EVEN (Y/N): N

SOURCE DRIVE (A: F:) : D:

TARGET FILE NAME (max. 8 char.) : EPROM

The program generates the file EPROM.000. (Note for insider: During generation of this file the

boot sector and the double FAT will be created. With it the silicon disk will be bootable).

Subsequently, this file can be transferred with the program SDLOAD to the program memory . The

program SDLOAD is called with the following parameters:

Utility Software for MS-DOS

98 VIPA GmbH CP486 ⋅ 00/14

C:\SD\SDLOAD

FLASH-PROMs resp. EEPROMs/PEROMs can be programmed:

1 Am28F010-150,P28F010-150

2 Am28F020-150,P28F020-150

3 Am28F040-150,P28F040-150

4 AT28C010-150

5 AT28C040-150

6 AT29C010-150

7 AT29C040-150

8 AT29MC010-150

9 AT29MC040-150

Please indicate the number of the ROM-type you used: 2

Please indicate the number of modules specified above

(2,4,6,8): 8

Please indicate the base address, you specified on the silicon disk board.

Input as Hex value: C00000

The contents of a file generated by SDGEN or the contents of a logical drive can be trasferred in

the silicon disk. Indicate the file name or the drive specification:

C:\EPROM.000

The contents of the file C:\EPROM.000 will now be transferred to the FLASH-PROMs. If the

program terminates without error, the FLASH-PROM disk is to be accessed as drive E:. The

contents of drive D: and drive E: are the same. However drive E: is write-protected. If the silicon

disk is specified as drive A: at address C00000hex in the BIOS-Setup, this program memory can be

used for booting as well.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 99

5.2 VGA-Configuration Program

in preparation

Utility Software for MS-DOS

100 VIPA GmbH CP486 ⋅ 00/14

5.3 Program CPLINK for Computer Link

With this program files can be loaded to the CP486 or read from the CP486 via the serial interface.

This way CP486 modules without floppy disk drive or without alternate memory

cards can be supplied with data and programs or recorded data can be read out.

Utility Software for MS-DOS

CP 486 ⋅ 00/14 VIPA GmbH 101

5.4 Program for Visualizing the PLC Process Image

The program S5KOP serves in the current version to visualize the process image in the processor of

the automation system.

The MS-DOS program S5KOP.EXE in the version 1.0 from 4-19-1991 has a capacity of 75645

bytes. VIPA handling modules for the CP486 must be included in the PLC.

Calling from MS-DOS is realized via the command "S5KOP<Return>". A title screen is displayed

which is cleared after pressing an optional key. Now you are in the main menu.

The menu "process image"is activated by pressing <F1>. There you can select via function keys

what is to be cyclically displayed:

<F1> Display of inputs

<F2> Display of outputs

<F3> Display of markers 0..127

<F4> Display of markers 128..255

<F5> Display of timers

<F6> Display of counters

<F8> Display of bank

The cyclic display can be interrupted by pressing the pause key <F7> until the next key press.

After pressing a selection key F1 .. F6 or F8, the respective process image is cyclically displayed

until you choose alternative.

By pressing the <F7> key ("pause") the current status is frozen until the next key press.

By pressing <ESC> you exit the menu process image and return back to the main menu and from

there again with <ESC> back to the DOS command prompt.

Utility Software for MS-DOS

102 VIPA GmbH CP486 ⋅ 00/14

5.5 EMS Driver

Driver for the EMS memory on CP486 is contained on the optionally available disk with original

QUADTEL software (software package CP4-SW583 (MS-DOS diskette, 3.5", 720KB) included the

manual CP4-HB72). This software is only sold as simplex capability, i.e. every system where this

driver is utilized requires a licence.

This package contains inter alia the following programs and drivers (cf. also section 5.8):

- Expanded Memory Manager (EMS)

- high memory loader

- printer spooler

- disk cache driver

- Ramdisk driver (for virtual disk in DRAM memory)

Installation is supported by the program INSTALL on the disk.

5.6 System Test Program

This system test program is contained on the optionally available disk with original QUADTEL

software (software package CP4-SW583 (MS-DOS diskette, 3.5", 720KB) included the manual

CP4-HB72). This software is only sold as simplex capability, i.e. every system where this driver is

utilized requires a licence.

This package contains inter alia a diagnostic program for the CP486 (cf. also section 5.5). The

diagnostic program can be loaded under MS-DOS and offers a list of tests of all important system

components. These tests can be run single or also as package.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 103

6. Linkage with PLC

6.1 General Description

Data transfer between CP486 and PLC is supported by handling modules on PLC side and by

software interrupts on CP side. Following routines are available:

Operation on PLC side Operation on CP side

Bank 0 PLC job: read data from CP

(PLC active)

Handling module

(FB3)

Interrupt service routine

Bank 1 PLC job: send data to CP

(PLC active)

Handling module

(FB3)

Interrupt service routine

Bank 2 CP job: read data from PLC

(CP486 active)

Cyclically called han-

dling module (FB1)

Software interrupt

Bank 3 CP job: send data to PLC

(CP486 active)

Cyclically called han-

dling module (FB1)

Software interrupt

Bank 4 reserved

Bank 5 reserved

Bank 6 reserved for standard CP

operation

(Send, Receive, Control, ..)

Bank 7 Transfer process image to CP Cyclically called han-

dling module (FB1)

Software interrupt or direct

access to bank

Following data structures in the PLC can be accessed on CP side:

- single elements in format byte, words and doublewords

DB, DX, markers, inputs, outputs, timer, counter, flag word

- data blocks

DB, DX, FB, FX, OB, PB, SB, BA, BB, BT, BS

Following PLC accesses to CP are possible:

the linkage supports all types of MS-DOS device-oriented accesses.

all jobs issued by the PLC are based on MS-DOS device functions.

Functions described below are available upward for CP386COM version 1.00 (Software CP4-

SW593 version 2.00) and handling module version 2.00 (CP4-SW977 and CP4-SW978 version

2.00). The program CP386COM is named in the following description as COM-driver.

Linkage with PLC

104 VIPA GmbH CP486 ⋅ 00/14

6.2 Installation of Bank Software for Linking PLC and CP486

6.2.1 PLC Side: Handling Modules

handling modules FB1 and FB2 have to be loaded in the PLC to enable communication with the

CP486. Handling module FB1 is called up in OB1 and handling module FB2 in the restart modules

(OB21 and OB22).

Example for calling up FB1 in OB1:

Module#OB1

BIB

0000 ;SPA FB 1

NAME #CP-L/S

ANSS =KY 2,32

PAA =KF +1

PAFE =MB 99

0005 ;BE

Transfer parameters:

ANSS: KY AN Number of jobs to be at most processed on the bank
when calling up a handling module

SS Number of basic bank

PAA: KF Update ident of process images on the bank when
calling up the handling module
>< 0 Process images are updated
= 0 Process images are not updated

PAFE: MB Error acknowledgement message of handling module
= 0 no error occurred
>< 0 error occurred. Error number is sent in PAFE-byte
Error number:
1 Number of jobs to be at most processed when calling up

a handling module is 0.
2 Number of jobs to be at most processed when calling up

a handling module is higher than 127.
3 Basic bank number is not divisible by 8
5 Bank is not synchronized yet by CP.
6 For a block job being the first call, no further job is allowed

to be in the bank.
7 A further block job is only allowed to be the first job in the bank.

Scratch markers used: MB200-MB255

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 105

Example for calling up FB2 in OB21:

Module#OB21

BIB

0000 ;SPA FB 2

NAME #SYNCHRON

SSNR =KY +32

WART =KF +0

PAFE =MB 98

0005 ;BE

Transfer parameters:

SSNR: KF Number of basic bank

WART: = 0 FB-SYNCHRON does not wait until every single bank is
synchronized by CP

>< 0 FB-SYNCHRON waits at every single bank until the CP
has synchronized this bank

PAFE: BY Error acknowledgement message of handling module
= 0 no error occurred
>< 0 error occurred:
3 basic bank number is not divisible by 8.

Scratch markers used: MB200-MB255

Linkage with PLC

106 VIPA GmbH CP486 ⋅ 00/14

6.2.2 CP486: MS-DOS Driver Program

For communication via banks between PC and CP a specific communication driver must be loaded

in the CP486. This driver is specific for the communication with the VIPA handling modules. The

driver supplies functions which are easy to handle. The user needs no detailed information

concerning structure and operation of the banks. The driver contains software to control all banks.

At the moment it currently supports: banks 0 and 1 (PC active, CP passive). banks 2 und 3 (PC

passive, CP active) and bank 7 (process image). The driver automatically supports all functions for

all banks, no further configuration is necessary for particular banks.

Driver Installation:

It is recommended to load the driver at the best during the start of the CP486, that means already in

AUTOEXEC.BAT. As well a later call is possible. Notice, that as a rule , the handling modules for

synchronization are called during the restart. They just wait for a fixed time for a reaction of the CP.

Therefore PC and CP remain unsynchronized if the driver is not started within this time and no

communication is possible.

Call: CP386com.exe [/ini] [/txx] [/ixx] [/notsr] [/?] [/h]

The driver is a resident program (TSR-Utility) and allocates about 26 KByte of main memory

(program and data). The driver can be loaded only once at a time. Any further call causes a message,

that the driver has already been installed. A removal of the driver from main memory (de-

installation) is not pssible, thereto the CP has to be rebooted.

Driver options (Revision 2.6 and following):

/INI or /ini

With this option-switch the communication bank is initialized, pending jobs are stopped and the

whole bank is cleared. The driver is not installed. This initialization can be as often as necessary.

/Txx or /txx

This option specifies the timeout in seconds for the driver. The default timeout value is 10seconds.

Possible values for the timeout time are 1sec .. xx 30sec

/Ixx or /ixx

This option specifies the number of the software-interrupt for the communication via bank 2 and 3

(CP active mode). The default value is 78h. Possible values are 78h, 7Ah .. 7Fh.

/NOTSR or /notsr

Using this option when calling the driver in the command line causes the program to be installed

nonresident. The program will not be finished, no further DOS-commands can be entered or

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 107

programs can be started subsequently. This option is only meaningful, if communication ensues

exclusively via banks 0 and 1 (CP passive). By pressing the F10-key and subsequent confirmation

with "j" the driver will be removed again.

/?, /H or /hxx

This option shows a list of all possible options of the driver.

Attention:

The COM-driver is designed to work with CP486-modules of the VIPA GmbH exclusively and can

be installed on these systems solely. Loading the driver on different AT-systems, even on i386 or

i486 processor, causes an immediate system-hang-up.

Reserved interrupts:

The driver uses several software interrupts for operation and communication with the applications

software of theCP-module:

- INT 1Ch Timer-Interrupt and INT 28 DOS-Idle-Interrupt

The so called ticker-interrupt with number 1Ch, as well as the so called DOS-idle interrupt are used

for routine and cyclical check of the bank. By this, it is regularly checked, whether the PC tries to

synchronize the banks recently. After executing the CP-specific functions, the initial interrupt

service routine is called.

- INT 74h (IRQ 12):

The CP486 uses the hardware-IRQ 12, which occupies software-interrupt 74h. This interrupt will be

triggered, if BASP is active in PC, or if the highest memory location of every bank (byte1023) is

written by the PC. The usage of the interrupt permits fast reaction of the CP to a request by the PLC.

After processing the CP-specific functions the initial interrupt service routine is called. In this

manner, different devices can use IRQ 12.

- INT 78h Service-Interrupt:

This interrupt is to be used by applications software in the CP to call functions of the driver, for

example data exchange with the PC via banks 2 and 3. Different functions can be triggered by

corresponding assigment of the processor registers. If INT 78 is called with register values, which

are invalid for the CP486 communication, the initial interrupt service routine is called.

Linkage with PLC

108 VIPA GmbH CP486 ⋅ 00/14

6.2.3 Different Data Representation in Memory:

For the transfer of data between CP and PC, the different representation of words and doublewords

(extended words) on AT and PC (programmable controllers) has to be taken into account.

Unlike AT´s the PLC stores the datatype word in a different form in memory, High-Byte and Low-

Byte are stored reverse. In doublewords all 4 bytes are stored in exact reverse order. If data of type

word, doubleword is exchanged between PC and CP, it´s quite natural that an interchange has to be

undertaken, otherwise data is wrong after transmission. As far this is possible in a meaningful way

the COM-driver processes this adaptation automatically.

For data exchange via banks 0/1 the user has to execute the interchange on its own, either on the CP

or on the PC. The driver processes the interchange automatically for the banks 2/3 and bank 7 in all

cases.

Operation:

During transmission of bytes no interchange takes place.

During transmission of words High- Byte and Low-Byte are interchanged.

During transmission of extended words all 4 bytes are reversed according to their order.

Data representation in PC (programmable controller):

Address n Byte Representation Byte

Address n High-Byte
Address n+1 Low-Byte Representation Word

Address n High-Byte High-Word
Address n+1 Low-Byte High-Word
Address n+2 High-Byte Low-Word Repres. Doubleword
Address n+3 Low-Byte Low-Word

Data representation in AT

Address n Byte Representation Byte

Address n Low-Byte
Address n+1 High-Byte Representation Word

Address n Low-Byte Low-Word
Address n+1 High-Byte Low-Word
Address n+2 Low-Byte High-Word Repres. Doubleword
Address n+3 HighByte High-Word

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 109

6.3 PLC-Jobs for CP486 (Functions for Bank 0 and 1)

6.3.1 Overview

All PLC-jobs are transacted via banks 0 and 1. In this way the CPU can use series of MS-DOS-

functions.

Die PLC-instructions are processed in background via interrupts, as soon as this driver is being

installed. In this way no additional software for the CP486 is necessary to operate the PLC-jobs.

The driver permits to call several MS-DOS system functions from the PC. Hereby all parameters

and information are exchanged transparent between PC and MS-DOS. The AT-driver software is

solely useful, to record the passed parameters correctly in the processor-register and to transfer the

returned values in a suitable form to the PC. The only fundamental restriction is, that only one part

of the MS-DOS system functions can be called by the PC. It´s not recommendable to call all

functions by the PC, because a great number of functions cannot be used meaningful by the PLC at

all. For further reasons a breakdown of the operating system can occur if a series of functions is

used in a non-adequate way. Therefore the driver software only supports such functions, which can

be used meaningful by the PLC. As function numbers for calling, exactly these function numbers of

the MS-DOS system function are to be specified.

Linkage with PLC

110 VIPA GmbH CP486 ⋅ 00/14

Bank no. Function no. Function
hex dec

1 $0D 13 reset all disk drives
1 $0E 14 select disk drive
0 $19 25 determine current disk drive

1 $39 57 set up directory
1 $3A 58 delete directory
1 $3B 59 change directory
0 $47 71 determine current directory

1 $3C 60 create file
1 $5A 90 create file without overwriting
1 $3D 61 open file
1 $68 104 write file physically to disk (without close)
1 $3E 62 close file
1 $41 65 delete file
1 $56 86 rename file

1 $42 66 set file pointer
0 $C2 194 read file pointer (no MS-DOS system function) !!

0 $3F 63 read from file or device
1 $40 64 write to file or device

0 $2A 42 read date
0 $2C 44 read time

1 $4B 75 execute program

0 $30 48 determine MS-DOS version
0 $59 89 read detailed error information

1 $FF 255 optional interrupt

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 111

Interface concept for banks 0 and 1

These two banks serve for reading and writing of data from or to the CP486 respectively. If the PLC

tries to read data from the CP or write data, it has to call the suitable handling module (SEND or

FETCH and RECEIVE). As a result these handling modules provide a job unit in bank 0 or bank 1.

A maximum of one job can be entered in the banks 0 und 1 at a time. The size of the data to be

transferred ranges from one word up to 504 words. The structure of the job unit inside bank 0 and

bank 1 is absolutely identical. The distinction reading or writing is only due to the bank number.

On the CP486-side, there is a job catalog deposit. As soon as the CP registers a job in bank 0 or in

bank 1, it takes the job number from the job unit and searches for the respective parameter block on

its side of the job catalog. In this catalog it is deposit, what should happen with the data, which e.g.

will be transferred from the PLC to the CP. The same happens for reading correspondingly, that

means, the CP searches in the bank by means of the job number, whether a catalog is filed on its

side. If yes, it makes the requested data available corresponding to its catalog.

Processing a Write Job:

The applications software calls the handling module SEND. At this point the programmer sets the

parameter for the job number, the transmission length in words, as well as the source of data in the

PC. The handling module checks these specifications. If the specifications are correct, it verifies,

whether the bank is unassigned. Unassigned means, whether the bank reports a running job. In this

case the send job would be rejected. If the bank is available the handling module creates a job unit

and stores the data to be written subsequent to the job unit in the bank and sets the job status to 'job

is running'. This is the identification for the CP, that a new job to be executed is waiting in the bank.

Accordingly, if the job is executable, the CP resets after executing the job, the identification 'job is

running' and sets instead of one of the identifications 'job finished with error' or 'job finished

without error'. If an error occurred, The CP reports a corresponding error code. With the handling

module CONTROL the user gets information about the status of the running job or the last job.

Linkage with PLC

112 VIPA GmbH CP486 ⋅ 00/14

Processing a Read Job:

With the handling module FETCH the applications software passes a read job to the CP. This

handling module verifies as well as the handling module SEND the specified parameters, creates a

job unit in bank 0 and sets the status to 'job is running'. By this the CP detects the existence of a new

job and executes this job, as already described under 'Write'. If the CP is able to supply these data, it

stores the data subsequent to the job unit in bank 0 and sets the status to 'finished without error'.

Additionally it sets the identification to 'data for receive available'. With the handling module

CONTROL the applications software allows reading the status instantly. If the data is prepared by

the CP, it can be transmitted to the PC via handling module RECEIVE. If this was successful, the

handling module RECEIVE resets the identification 'data for receive available'. From this time a

new receive job can be entered by the software.

In the case, that the applications software tries to access a new write or read job, while a write or

read job is still running, the applications software receives the identification 'interface busy". This

identifications are placed only by handling modules, they are of no account for the communication

with the CP.

Multiprocessor Operation:

The interface (data structured in banks) is not suitable in the current version for multiprocessor

operation in PC. Only one and the same CPU is allowed to access at any time to a CP implemented

in the PC !!

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 113

,6.3.2 Parameterization of Handling Modules:

The handling modules SEND (FB3), CONTROL (FB4), FETCH (FB5) and RECEIVE (FB6) are

parameterized as follows:

6.3.2.1 Handling Module SEND (FB3, Relative Bank Number: 1):

This handling module transfers a data block of up to 504 words from a DB to the CP486. For

identification purposes a job number is also sent to the CP486. The handling module supplies the

result by means of a display word in a marker word to the application program. Parameterization

errors are signalled via a marker byte. The handling module is directly and indirectly

parameterizable:

Module#FB3

BSTNAME #SEND

BIB

BEZ #INSS D:KY

BEZ #A-NR D:KY

BEZ #DOSP D:KY

BEZ #ANZW D:KY

BEZ #QT/N D:KY

BEZ #QANF D:KF

BEZ #QLAE D:KF

BEZ #PAFE A:BY

Transfer parameters:

INSS: D KY IN Code if direct or indirect parameterization
= 0 direct parameterization via formal operands
>< 0 indirect parameterization - transfer parameters are filed

in opened DB
SS number of basic bank (must be divisible by 8)

A-NR: D KY If direct parameterization left byte has the job number
(1..127) and right byte the function number for CP-driver.
If indirect parameterization, A-NR has the DW-no, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.

DOSP: D KY DOS-parameter which is also transferred at certain functions.
It can be a handle, an access or a drive-number.

ANZW: D KY left byte: reserve
right byte: contains the MW-no. where the display word is
to be stored (permitted are MW0..MW198)
Display word can have following information at SEND status:
Bit .0 =0

.1 job runs (job transferred without errors)

.2 =0

.3 job finished with error
4 F-Nr. 2 raised to 0

2 raised to 1
2 raised to 2
2 raised to 3

Linkage with PLC

114 VIPA GmbH CP486 ⋅ 00/14

Error numbers are dual encoded.
Error number 1 interface occupied by PLC (job runs)

6 interface occupied by CP

QT/N: D KY left byte: reserve
right byte: source module no. (2...255), DB-no. of
the module with data to be transferred is specified

QANF: D KF Initial address in DB (0...32761), the DW-no. is specified from
which on the data to be transferred are filed in the DB.

QLAE: D KF Number of data words to be transferred (1...504)

PAFE: A BY Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)
Error acknowledge message of handling module:
= 0 no error occurred
><0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
5 bank is not synchronized yet by the CP
10 invalid job number (out of 1...127)
12 no DB open for indirect parameterization
13 source module is not existent
14 source module too short
15 QLAE is invalid (out of 1...504)
16 DB for indirect parameterization too short
18 invalid source module no. (out of 2...255)
19 invalid source initial address (out of 0...32761)
20 invalid marker word no. for ANZW (out of 0...198)

Attention:If the bank number of the CP does not coincide with the number parameterized in
this module, the CPU goes in stop with QVZ!

Parameter storage in a DB if parameterization is indirect:
DL DR

A-NR points to the beginning INSS

A-NR F-NR
DOSP
ANZW
QT/N
QANF
QLAE

PAFE is not parameterizable indirectly

0 can be parameterized at all other formal operands (SS, DOSP, ANZW, QT/N, QANF, QLAE)

because these are not evaluated at indirect parameterization.

Scratch markers used: MB200-255

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 115

6.3.2.2 Handling Module CONTROL (FB4, Relative Bank Number: 0/1):

This handling module outputs the status of a write or read job. For identification purposes a job

number is also sent to the CP486. The handling module supplies the result by means of a display

word in a marker word to the application program. Parameterization errors are signalled via a

marker byte. The handling module is directly and indirectly parameterizable:

Module#FB4

BSTNAME #CONTROL

BIB

BEZ #INSS D:KY

BEZ #A-NR D:KF

BEZ #DOSP D:KY

BEZ #RWAW D:KY

BEZ #PAFE A:BY

Transfer parameters:

INSS: D KY IN Code if direct or indirect parameterization
= 0 direct parameterization via formal operands
>< 0 indirect parameterization - transfer parameters are filed

in opened DB
SS number of basic bank (must be divisible by 8)

A-NR: D KF If direct parameterization right byte has the job number (0..127)
If indirect parameterization, A-NR has the DW-No, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.
For job number 1...127, the status of the suitable job is read.
For job number 0, the status of the actually running or
finally executed job is read.

DOSP: D KY left byte: reserve
right byte: contains MW-no., where DOS-parameter
is to be stored.

RWAW: D KY RW = Control for read job in bank 0
= Control for write job in bank 1

AW contains the MW-no. where the display word is
to be stored (permitted are MW0..MW198)
Display word can have following information:
Bit .0 receive meaningful

.1 job runs (job transferred without errors)

.2 finished without error

.3 job finished with error
4 F-Nr. 2 raised to 0

2 raised to 1
2 raised to 2
2 raised to 3

Error number is dual encoded.
Error number 4 not defined job status on the CP

5 no job under this job number
6 interface occupied by CP

Bits 8-15 contain a probable error number of the CP486

PAFE: A BY Markerbyte, in which the PAFE-message is transferred to

Linkage with PLC

116 VIPA GmbH CP486 ⋅ 00/14

PLC program (permitted 0...255)
Error acknowledge message of handling module:
= 0 no error occurred
><0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
4 bank is not existent (acknowledgement delay at bank access)
5 bank is not synchronized yet by the CP
10 invalid job number (out of 1...127)
12 no DB open for indirect parameterization
16 DB for indirect parameterization too short
20 invalid marker word no. for ANZW (out of 0...198)
21 invalid marker word no. for DOSP (out of 0...198)

Parameter storage in a DB if parameterization is indirect:

DL DR
A-NR points to the beginning INSS

A-NR
DOSP
RWAW

PAFE is not parameterizable indirectly

0 can be parameterized at all other formal operands (SS, RWAW) because these are not evaluated at

indirect parameterization.

Scratch markers used: MB200-255

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 117

6.3.2.3 Handling Module FETCH (FB5, Relative Bank Number: 0):

This handling module transfers the read job to the CP486. For identification purposes a job number

is also sent to the CP486. The handling module supplies the result by means of a display word in a

marker word to the application program. Parameterization errors are signalled via a marker byte.

The handling module is directly and indirectly parameterizable:

Module#FB5

BSTNAME #FETCH

BIB

BEZ #INSS D:KY

BEZ #A-NR D:KY

BEZ #DOSP D:KY

BEZ #LAE D:KF

BEZ #ANZW D:KY

BEZ #PAFE A:BY

Transfer parameters:

INSS: D KY IN Code if direct or indirect parameterization
= 0 direct parameterization via formal operands
>< 0 indirect parameterization - transfer parameters are filed

in opened DB
SS Number of basic bank (must be divisible by 8)

A-NR: D KY If direct parameterization left byte has the job number
(1..127) and right byte the function number for CP-driver.
If indirect parameterization, A-NR has the DW-No, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.

DOSP: D KY DOS-parameter which is also transferred at certain functions.
It can be a handle, an access or a drive-number.

LAE: D KF Number of data words to be read (corresponding to the passed
function no. for the DOS-driver, e.g. number of data which are
to be read from a file

ANZW: D KY left byte: reserve
right byte: contains the MW-no. where the display word is
to be stored (permitted are MW0..MW198)
Display word can have following information at FETCH status:
Bit .0 =0

.1 job runs (job transferred without errors)

.2 =0

.3 job finished with error (job was not transferred)
4 F-Nr. 2 raised to 0

2 raised to 1
2 raised to 2
2 raised to 3

Error numbers are dual encoded.
Error number 1 interface occupied by PLC (job runs)

6 interface occupied by CP

PAFE: A BY Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)

Linkage with PLC

118 VIPA GmbH CP486 ⋅ 00/14

Error acknowledge message of handling module:
= 0 no error occurred
><0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
5 bank is not synchronized yet by the CP
10 invalid job number (out of 1...127)
12 no DB open for indirect parameterization
16 DB for indirect parameterization too short
20 invalid marker word no. for ANZW (out of 0...198)

Attenttion:

If the bank number of the CP does not coincide with the number parameterized in this module, the

CPU goes in stop with QVZ!

Parameter storage in a DB if parameterization is indirect:

DL DR
A-NR points to the beginning INSS

A-NR F-NR
DOSP
LAE

ANZW

PAFE is not parameterizable indirectly

0 can be parameterized at all other formal operands (SS, DOSP, LAE, ANZW) because these are

not evaluated at indirect parameterization.

Scratch markers used: MB200-255

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 119

6.3.2.4 Handling Module RECEIVE (FB6, Relative Bank Number: 0):

This handling module transfers a data block of up to 504 words from the CP486 to a DB. Before

calling the RECEIVE module, the CP486 must be informed by means of the FETCH handling

module about data which it requires. For identification purposes a job number is also sent to the

CP486. This job number is returned together with the data.

The handling module supplies the result by means of a display word in a marker word to the

application program. Parameterization errors are signalled via a marker byte. The handling module

is directly and indirectly parameterizable:

Module#FB6

BSTNAME #RECEIVE

BIB

BEZ #INSS D:KY

BEZ #A-NR D:KF

BEZ #ANZW D:KY

BEZ #ZT/N D:KY

BEZ #ZANF D:KF

BEZ #ZLAE D:KF

BEZ #PAFE A:BY

Transfer parameters:

INSS: D KY IN Code if direct or indirect parameterization
= 0 direct parameterization via formal operands
>< 0 indirect parameterization - transfer parameters are filed

in opened DB
SS number of basic bank (must be divisible by 8)

A-NR: D KF If direct parameterization, A-NR has the job number (0..127).
For a number 1...127 it is checked whether data being prepared
by the CP, have the same job number. Data are taken over
only if they have the same job number. In case of job number 0,
data are taken over by the CP in any case.
If indirect parameterization, A-NR has the DW-No, from which
on the parameters are in the open DB. Thereby the content
of the parameter is evaluated as word.

ANZW: D KY left byte: reserve
right byte: contains the MW-no. where the display word is
to be stored (permitted are MW0..MW198)
Display word can have following information at SEND status:
Bit .0 =0

.1 job runs (still no data received from the CP)

.2 job finished without error (data are in DB)

.3 job finished with error (error no. in Bit 4...7)
4 F-Nr. 2 raised to 0

2 raised to 1
2 raised to 2
2 raised to 3

Error numbers are dual encoded.
Error number 2 no data existent

3 no data present for this job
4 not defined job status on the CP
6 interface occupied by the CP

Linkage with PLC

120 VIPA GmbH CP486 ⋅ 00/14

ZT/N: D KY left byte: reserve
right byte: target module no. (2...255), DB-no. of
the module with data to be transferred is specified

ZANF: D KF Initial address in DB (0...32761), the DW-no. is specified from
which on the data to be transferred are filed in the DB.

ZLAE: D KF Number of data words (1...504) at least to be transferred,
CP passes only so many data words as it also supplies.

PAFE: A BY Markerbyte, in which the PAFE-message is transferred to
PLC program (permitted 0...255)
Error acknowledge message of handling module:
= 0 no error occurred
><0 error occurred, error number in PAFE-Byte:
3 basic bank number is not divisible by 8
4 bank not existent (acknowl. delay at access)
5 bank is not synchronized yet by the CP
10 invalid job number (out of 1...127)
12 no DB open for indirect parameterization
13 source module is not existent
14 source module too short
15 ZLAE is invalid (out of 1...504)
16 DB for indirect parameterization too short
18 invalid target module no. (out of 2...255)
19 invalid target initial address (out of 0...32761)
20 invalid marker word no. for ANZW (out of 0...198)

Attention: error number 4 in PAFE is dedicated for future improvements. In the moment, it is generally not
possible to recognize QVZ via software in the CPUs for the PLC-115. In this version, the CPU goes in QVZ in
stop, if the bank number of the CP does not coincide with the number being parameterized in this module.

Parameter storage in a DB if parameterization is indirect:

DL DR
A-NR points to the beginning INSS

A-NR
ANZW
ZT/N
ZANF
ZLAE

PAFE is not parameterizable indirectly

0 can be parameterized at all other formal operands (SS,, ANZW, ZT/N, ZANF, ZLAE) because

these are not evaluated at indirect parameterization.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 121

Data storage in a DB:

DL DR
ZANF points to the beginning A-Nr F-Nr

No. of word being read
Data being read by the CP are

filed from here on
...
...

Scratch markers used: MB200-255

Linkage with PLC

122 VIPA GmbH CP486 ⋅ 00/14

6.3.2.5 Parameterization of File Accesses via Handles

The COM-driver allows full access to all drives of the CP and supports access to directories. For

every file access a drive and/or directory name can be specified and the same rules are valid, as

known from MS-DOS.

To access files under MS-DOS numbers, the so called handles are used. The amount of available

handles and herewith the maximum number of open files at the same time is specified by the entry

FILES = n in the CONFIG.SYS. We recommend to set the FILES-parameter at a minimum of 20,

better however to 25 or 30.

By means of handles not only files on a mass storage, like hard disk, RAM disk or disk can be

accessed. MS-DOS offers the opportunity to access via handles so called devices as well, like

printer and serial interfaces. For a series of devices standard handles have already been defined.

These devices need not to be opened before they are accessed. By direct read or write functions data

can be read or output. Thus the PC can in easy way directly access printer, screen and keyboard of

the CP486.

Predefined Standard-Handles

Handle Device access mode
00 standard-input (keyboard), read only
01 standard-output (screen), write only
02 standard-error (screen too), write only
03 standard-auxiliary (V24-interface), read and write
04 standard-printer (auxiliary), write only

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 123

6.3.2.6 File Names

Like already mentioned, file names can be specified as well with drive and/or path specification.

The CP486 software does not affect this. Directories are to be assigned, as usual, with a backslash

(ASCII-Code 92, 5C hex). The character can also be entered correctly with the PG. The maximum

length of a path specification is up to 64 characters. A file specification can consist of a maximum

of 2 characters for the disk drive specification, up to 64 characters for the path specification as well

as 8 characters for the file name and 3 characters for the extension, at the whole up to 78 characters.

Ist also possible to use a fixed form for a file name, consisting of 8 characters, a point, and 3

characters for the extension. If the file name is shorter than 8 characters or the extension shorter

than 3 characters, it is possible to preset the positions not used with blanks (ASCII-Code 32, 20

hex).

For MS-DOS system functions, which need a file name as parameter, the file name must be closed

up with the character ASCII zero (ASCII-code 0). For this reason the file name should be terminated

with character ASCII-zero when a file name is passed from the PC to the CP486. If the file name is

odd-numbered, this is unconditionally required. As the handling modules can enter only a block of

words into a bank, it is necessary to fill up the file name with ASCII zero to an even-numbered

length to achieve a block of words. If a file name is specified without terminating ASCII zero, the

CP software completes the missing zero.

Linkage with PLC

124 VIPA GmbH CP486 ⋅ 00/14

6.3.3 Function Description

6.3.3.1 Reset All Disk Drives (Disk Reset)

This functon enables to store all modified and non-saved file buffers physically to the drives.

Parameterization of FB3: F-Nr 13 ($0D hex)

6.3.3.2 Select Disk

Parameterization of FB3: F-Nr 14 ($0E hex)
DOSP Number of requested disk drive

Drive number 0 A:
1 B:
2 C:

Attention:

For this function drive number 0 corresponds to drive A:, composite to other functions like "get

current directory".

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 125

6.3.3.3 Get Disk

The function outputs the number of the current (default) disk drive. The corresponding disk
drive character "A", "C", ... is filed to byte 6.

Parameterization of FB5: F-Nr 25 ($19 hex)

Parameterization of FB6: ZT/N no. of DB for disk drive data
ZANF position of data word in DB
ZLAE length of drive data in the DB in words (1)

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 drive character drive number

Parameter
Disk drive no.: 0 A:

1 B:
.. ..

Attention:

For this function drive number 0 corresponds to drive A:, composite to other functions like "get

current directory".

Linkage with PLC

126 VIPA GmbH CP486 ⋅ 00/14

6.3.3.4 Create Directory

Parameterization of FB3: F-Nr 57 ($39 hex)
QT/N no. of DB with directory name
QANF position of directory name in the DB
QLAE length of directory name in the DB in words

Content of DB: DW1 directory name
DW2 ...
DW3 ...
...

Note:

The directory name must be terminated with 0-byte, if it is of odd-numbered length (is not necessary

for even-numbered length).

6.3.3.5 Delete Directory

Parameterization of FB3: F-Nr 58 ($3A hex)
QT/N no. of the DB with directory name
QANF position of directory name in DB
QLAE length of directory name in the DB in words

Content of DB: DW1 directory name
DW2 ...
DW3 ...
...

Note:
The directory name must be terminated with 0-byte, if it is of odd-numbered length (is not
necessary for even-numbered length).
Specifying a disk drive in the directory name allows to delete a directory also in a not
logged-on drive.

This function is finished with an error if the specified directory is the current directory or if the

specified directory contains files.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 127

6.3.3.6 Set Current Directory

Parameterization of FB3: F-Nr 59 ($3B hex)
QT/N no. of DB with the directory name
QANF position of directory name in DB
QLAE length of directory name in the DB in words

Content of DB: DW1 directory name
DW2 ...
DW3 ...
...

Note:
The directory name must be terminated with 0-byte, if it has an odd-numbered length (is not
necessary for even-numbered length).
Regard that the current drive cannot be changed by means of this function. The directory can
be, of course, affixed with a drive specification, but the current directory remains adjusted
on the previous value on the drive logged-on. Only when the directed drive is accessed e.g.
by the function "Select Disk", then the required drive is set.

Linkage with PLC

128 VIPA GmbH CP486 ⋅ 00/14

6.3.3.7 Get Current Directory

Parameterization of FB5: F-Nr 71 ($47 hex)
DOSP disk drive number

Parameterization of FB6: ZT/N no. of DB with the directory name
ZANF position of directory name in DB
ZLAE length of directory name in the DB in words

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 directory name
DW4 ...
...

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 129

6.3.3.8 Create File/Rewrite Existing File

Parameterization of FB3: F-Nr 60 ($3C hex)
DOSP attribute of new file
QT/N no. of DB with the file name
QANF position of file name in DB
QLAE length of file name in the DB in words

Content of DB: DW1 file name
DW2 ...
DW3 ...
...

Parameter:
Attribute: 00 normal

01 read-only
02 hidden
04 system

File attributes can be added up:
e.g. attribute 03 => file is read-only and hidden.

Return of FB3: DOSP Handle of the new file

Note:

Does a file with the specified name already exist, then it is cut to zero length, i.e. all present data are

deleted.

Linkage with PLC

130 VIPA GmbH CP486 ⋅ 00/14

6.3.3.9 Create New File

Parameterization of FB3: F-Nr 90 ($5A hex)
DOSP attribute of the new file
QT/N no. of DB with the file name
QANF position of file name in DB
QLAE length of file name in the DB in words

Content of DB: DW1 file name
DW2 ...
DW3 ...
...

Parameter:
Attribute: 00 normal

01 read-only
02 hidden
04 system
File attributes can be added up:
e.g. attribute 03 => file is read-only and hidden.

Return of FB3: DOSP Handle of the new file

Note:

Does a file with the specified name already exist, then it is cut to zero length, i.e. all present data are

deleted.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 131

6.3.3.10 Open File

Parameterization of FB3: F-Nr 61 ($3D hex)
DOSP access mode
QT/N no. of DB with file name
QANF position of file name in DB
QLAE length of file name in DB in words

Content of DB: DW1 file name
DW2 ...
DW3 ...
...

Parameter:
Access mode: 00 open file for reading

01 open file for writing
02 open file for reading and writing

Return of FB3: DOSP handle of the new file

Note:

After opening the file, the access mode can no more be changed, just after closing and renewed

opening it is possible to apply another access mode. Net accesses are possible for this function but

are not taken into account.

(SHARE.EXE must be loaded)

6.3.3.11 Write Physically a File to Disk (Commit File)

This function ensures a physical transfer of all modified internal data buffers of a CP486 file to the

drive and updating of date and time of the last modification in the directory and updating of the file

size. This function is equivalent to file closing and renewed opening.

Parameterization of FB3: F-Nr 104 ($68 hex)
DOSP handle number of file to be written

This function does not transfer any data from the PC to the CP486.

Linkage with PLC

132 VIPA GmbH CP486 ⋅ 00/14

6.3.3.12 Close File

Parameterization of FB3: F-Nr 62 ($3E hex)
DOSP handle number of file to be closed

This function does not transfer any data from the PC to the CP486.

6.3.3.13 Delete File

This function deletes a file on a CP486 drive. The file needs not to be open before deletion. It is

even possible to delete a file without error message which is open somewhere else and is still

processed. The user has to take care that no files being in the moment accessed are deleted. This

task is realized for networks by the network management software.

Parameterization of FB3: F-Nr 65 ($41 hex)
QT/N no. of DB with file name
QANF position of file name in DB
QLAE length of file name in the DB in words

Content of DB: DW1 file name
DW2 ...
DW3 ...
...

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 133

6.3.3.14 Rename File

Parameterization of FB3: F-Nr 86 ($56 hex)
QT/N no. of DB with file name
QANF position of file names in DB
QLAE length of file names in the DB in words

Content of DB: DW1 original file name, zero character, new
DW2 file name
DW3 ...
...

The file must not be opened before renaming.

As data both file names are to be transferred connected, first the original file name and then
the new file name. Both names must be separated by at least an ASCII-zero character. As
data length must be defined the length of both file names including all zero characters.

This function can be used to move a file into another directory (move file). Therefore, only
the name of the required target directory must be specified in the new file name. Regard that
moving a file is possible only within a disk drive.

Linkage with PLC

134 VIPA GmbH CP486 ⋅ 00/14

6.3.3.15 Set File Pointer

Parameterization of FB3: F-Nr 66 ($42 hex)
DOSP POS (high-order byte), handle (low-order byte)
QT/N no. of DB with file pointer
QANF position of file pointer in DB
QLAE length of data record (2 words)

Content of DB: DW1 high-order word of file pointer
DW2 low-order word of file pointer

Parameter:
POS: 0 abs. position of file start

1 rel. position from current position (signed)
2 rel. position from file end (signed)

Note:
Note that the value of the file pointer is always to be regarded as the specification of a byte-
position.
Length of a file can be detected by means of this function if 02 is entered as function code
and 0 as new relative position of file end. Finally, the position being at the same time the
number of data can be achieved via "get file pointer".

6.3.3.16 Get File Pointer

Parameterization of FB5: F-Nr 194 ($C2 hex)
DOSP handle

Parameterization of FB6: ZT/N no. of DB for required data
ZANF target position in DB
ZLAE 2

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 high-order word of file pointer
DW4 low-order word of file pointer

The file pointer is returned again as a doubleword. Thus, the digit 2 is also to be specified as

number of data. Note that the value of the file pointer is always to be regarded as the
specification of a byte-position.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 135

6.3.3.17 Read File or Device

Parameterization of FB5: F-Nr 63 ($3F hex)
DOSP handle of the file

Parameterization of FB6: ZT/N no. of DB for data to be read
ZANF target position in DB
ZLAE number of data words to be read (2)

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 data word 1
DW4 data word 2
...

The number of words to be read from the file is not allowed to be higher than 504, otherwise the

function is aborted with errors.

An exchange of bytes in a data word or doubleword is not provided in this function. All data are

transferred unchanged from the CP486 to the PC. In most of the cases it is delt with ASCII-files

where an exchange is proved anyway to be not necessary. If required, the exchange must be done on

the AT or PLC side, depending on the demands.

Linkage with PLC

136 VIPA GmbH CP486 ⋅ 00/14

6.3.3.18 Write File or Device

Parameterization of FB3: F-Nr 64 ($40 hex)
DOSP handle of file
QT/N no. of DB with data to be written
QANF position of data in DB
QLAE length of data record to be written in words

The number of words to read from the file is not allowed to be higher than 504, otherwise the

function is aborted with errors.

An exchange of bytes in a data word or doubleword is not provided in this function. All data are

transferred unchanged from the PC to the CP486. In most of the cases it is delt with ASCII-files

where an exchange is proved anyway to be not necessary. If required, the exchange must be done on

the AT or PLC side, depending on the demands.

If the function was terminated without errors but the written number is lower than the required, then

a partial write error has probably occurred during the execution, or the character ^Z ASCII-code 26,

1A hex has been written to a character device (standard output).

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 137

6.3.3.19 Get Date

Parameterization of FB5: F-Nr 42 ($2A hex)

Parameterization of FB6: ZT/N no. of DB for the date to be read
ZANF target position in DB
ZLAE number of data words to be read (3)

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 year
DW4 month day
DW4 week-day -----

Parameter:
Year 1980 ... 2099
Month 1 ... 12
Day 1 ... 31
Week-day 0 ... 6, (0=Sunday, 1= Monday, ...)

6.3.3.20 Get Time

Parameterization of FB5: F-Nr 44 ($2C hex)

Parameterization of FB6: ZT/N no. of DB for the time to be read
ZANF target position in DB
ZLAE number of data words to be read (2)

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 hour minutes
DW4 seconds hundredth seconds

Parameter:
Hour 0 ... 23
Minute 0 ... 59
Second 0 ... 59
Hundredth second 0 ... 99

The function returns after an error-free termination two words as number of data.

All values are to be interpreted as bytes.

Linkage with PLC

138 VIPA GmbH CP486 ⋅ 00/14

6.3.3.21 Program Execute

Direct commands can be passed to the CP486 via this function.

Parameterization of FB3: F-Nr 75 ($4B hex)
QT/N no. of DB with the MS-DOS-command line
QANF position of command line in DB
QLAE length of command line in DB in words

MS-DOS is no Multi-Tasking operating system enabling concurrent execution of several programs.

As a rule, the main memory of a personal computer is too much limited as to load a series of

resident programs with extensive data areas. This function can be called in the moment only if no

other program is running on the CP486 apart from the COM-driver and other resident utilities. The

COM-driver CP386COM.EXE must be started hereto in non-resident operation (option /NOTSR

when calling CP386COM.EXE).

This function is finished when the called program is terminated with or without errors.

Consequently, the bank stays disabled for other jobs during the program run. This must be

considered when calling another function!

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 139

6.3.3.22 Get MS-DOS Version

Parameterization of FB5: F-Nr 48 ($30 hex)

Parameterization of FB6: ZT/N no. of DB for data to be read
ZANF target position in DB
ZLAE number of data words to be read (3)

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 main number subnumber
DW4 OEM-number user number
DW5 serial number

The function returns 3 words as data number after an error-free completion. The version main

number is entered to data byte 0, version subnumber to data byte 1 and the OEM identification is

entered to data byte 2. The bytes 3 and 5 return a 24 bit application serial number. Thereof the

highest-order byte is filed to byte 3 and the low-order bytes to byte 4 and 5.

Linkage with PLC

140 VIPA GmbH CP486 ⋅ 00/14

6.3.3.23 Get Detailed Error Information

Parameterization of FB5: F-Nr 89 ($59 hex)

Parameterization of FB6: ZT/N no. of the DB for data to be read
ZANF target position in DB
ZLAE number of data words to be read (3)

Content of DB: DW1 A-NR F-Nr
DW2 number of words being read
DW3 error code
DW4 error class remedy
DW5 error location ------

The function outputs MS-DOS error codes in the data record after an error-free completion. Error

code (see table) is entered in data byte 0 and 1, in data byte 2 the error class (see table), in data byte

3 the remedy and in data byte 4 the error position (see table).

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 141

Table with error codes:

01 invalid function number
02 file not found
03 path (directory) not found
04 too many open files, remedy: increase number of files in CONFIG.SYS
05 access refused

attempt to modify a write-protected file
06 invalid handle, there is no opened file for the specified handle
07 memory control blocks destroyed

MS-DOS inoperable, system must be rebooted
08 no memory existent
09 invalid memory control block
10 (0A) invalid environment
11 (0B) invalid program format

program is incorrect structured or file has no program
12 (0C) invalid access code, wrong access mode input when opening file
13 (0D) invalid data
14 (0E) invalid unit
15 (0F) invalid disk drive, a non-existing disk drive has been responded
16 (10) invalid command
17 (11) not the same device
18 (12) no more files can be created, directory is full
19 (13) disk is write protected
20 (14) unknown device
21 (15) disk drive not ready. No disk inserted
22 (16) unknwn command
23 (17) data error (CRC-error)

checksum of disk/hard disk sector wrong; sector probably defect
24 (18) length of request structure wrong
25 (19) seek error, positioning error, file pointer was positioned beyond end of file
26 (1A) unknown media type, (disk is not in MS-DOS format)
27 (1B) sector not found
28 (1C) printer reports paper out
29 (1D) write error
30 (1E) read error
31 (1F) general error
32 (20) file sharing violation
33 (21) file locking violation
34 (22) invalid disk change
35 (23) FCB not available
36 (24) file sharing buffer overflow
80 (50) file already exists
82 (52) directory cannot be created
83 (53) Int 24 error (handling of critical errors)

Attention: for special error conditions the CP486 reports two specific error
codes, which are not defined under MS-DOS.

112 (70) size error, invalid number of data
(e.g. trial to read or write more than 504 words)

113 (71) time exceeded during communication.
For about 10 sec the CP was unable to access the bank.

Linkage with PLC

142 VIPA GmbH CP486 ⋅ 00/14

Code table for error classes:

01 no resources available (memory or handles)
02 no error, but actual status (disabled region in a file),

which is expected to disappear.
03 authorisation problem
04 internal error in system software
05 hardware error
06 system software error, no error of active process

(as missing configuration files)
07 application program error
08 file or element not found
09 file or element has a faulty type or format
0A file or element access disabled
0B wrong disk in disk drive,

faulty data sectors or error of storage medium
0C other error

Code table for recommended measures

01 function repeat several times.Then ask user whether to abort
or to ignore the error.

02 function repeat several times time-delayed between single attempts.
Then ask the user whether to abort or to ignore the error.

03 correct information by user input
(usually caused by invalid file name or disk drive specification).

04 abort application correctly
(close opened files, disable file locking)

05 stop application immediately without 'ordering'.
06 ignore error
07 repeat after the user is prompted to correct the error.

Code table for error locations

01 unknown
02 block device or disk drive emulation (RAM disk)
03 network
04 serial device
05 memory

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 143

6.3.3.24 General Interrupt

The function enables to call general interrupts of the AT, e.g. VGA-BIOS-interrupts, keyboard

interrupt, mouse interrupt etc. Because of various parameterization opportunities it is not possible to

supply all registers with parameters. Four data words are passed to this function which are loaded

correspondingly in registers AX, BX, CD and DX. The interrupt number is to be stored to the

DOSP-parameter. All interrupt numbers are permitted.

After the function is executed, the value returned to register AX is entered in DOSP-parameter.

Parameterization of FB3: F-Nr 255 ($FF hex)
DOSP interrupt number
QT/N no. of DB with data to be written
QANF data position in DB
QLAE length of data record to be written in words

DB content: DW1 data word for register AX
DW2 data word for register BX
DW3 data word for register CX
DW4 data word for register DX

Return of FB3: DOSP data word from register AX

Attention:

This call should only be used by experienced DOS-programmers because this

call enables arbitrary DOS-accesses.

Linkage with PLC

144 VIPA GmbH CP486 ⋅ 00/14

6.3.4 Demo Program: Get Time of CP486 from PLC

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 145

6.4 CP486 Jobs for PLC (Functions for Bank 2, 3 and 7)

6.4.1 Overview

The driver program CP386COM serves jobs initiated by the PLC, as well as jobs initiated by the

CP386. The driver supplies a series of functions for the banks 2, 3 and 7. With these functions data

can be read from the PC or written to the PC respectively from a running application on the CP486.

All functions are called by means of software interrupt 78h.

Tranfer and return of parameters is realized exclusively in the processor registers when calling the

interrupt. Register assignment is included in the description of functions. Interfaces are

implemented for Turbo-Pascal, Turbo-C and C++, as well as Microsoft-C. Also functions for

reading and writing of data to the PC, status call and abort functions are realized. Functios are

differed by exchanging single elements and data blocks when data are transmitted. Functios are

handled as "jobs". When calling a function, a job number is returned which is used to call the

processing status. Up to 127 jobs can processed at the same time in each of banks 2 and 3.

Following functions are available:

Bank Function Function
used number

none $00 status call

2 $21 read a single element from the PC
2 $21 read a block from the PC
2 $20 status call of read job
2 $28 abort all read jobs

3 $31 write a single element into the PC
3 $31 write a block into the PC
3 $30 status call of write job
3 $38 abort all write jobs

7 $70 status call for process image
7 $71 read a process image area

Linkage with PLC

146 VIPA GmbH CP486 ⋅ 00/14

6.4.2 Driver Functions via Software Interrupt

6.4.2.1 CP-Status Call

This function outputs various arbitrary status information via the CP486. Moreover, it can be used

by the applications software to check whether the CP486 software driver is loaded. Further

information returned is the output status of hard and software, CPU identification etc.

Register IN high OUT low

AX $00 $C386
BX VGA-Bios Bios
CX CP CPU
DX CP-Status PC-Status

AX C386 hex code for CP software is loaded
BH output status of CP486 VGA-BIOS
BL output status of CP486-BIOS
CH output status of driver software (CP)
CL code of CPU in PC (valid if banks are synchronised)
DH CP status register (IO-address 280h)
DL PC status register (IO-address 281h)

Codes of the output statuses (version numbers) for BIOS, VGA and driver are BCD-coded in one

byte. That is, the value 10 (hex) is equivalent to version 1.0; 15 (hex) is equivalent to version

number 1.5 and 1A (hex) is equivalent to version 1.10.

This function does not execute any initializations in the banks.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 147

6.4.2.2 Read a Single Element from the PC

With this function a single data type (bit, byte, word,...) can be read from the PC. The function is
just starting the job and does not wait for the PC to execute it, but returns immediately, to where it
was called. Therefore the data can be read not before the function 'status call' was executed (see
there).

Register high In low Out

AX $21 typ status
BX size bst
CX adr
DX - bit

typ element area (type) of data for single element in PC (DB, MB, ...)
size code of data size (bit, byte, ...)
bst module number, is to be set only for data area (type) DB or DX

if data area (type) is absolute, the higher order bits of adr are here.
adr initial address in area
bit Bit-number if element size is bit or semaphore.

status < 0 error code because of an error
error numbers of PC are summed up with FFF0h

1..127 job number to call status

Note:
This function does not return data! If the job status is 'finished without error', the data can be passed
by calling the function status call.

To ensure, that a finished reading job will not be overwritten with a new job before data are passed,
the job is blocked. After starting a job, its status is to be checked as long as the job is finished with
or without error. If the status of the job is 'finished without error', data will be copied to the AT with
the address specified. If no status call is executed, the job remains blocked, and possibly no further
read jobs can be started, even if all jobs in the bank are finished.

Linkage with PLC

148 VIPA GmbH CP486 ⋅ 00/14

6.4.2.3 Read a Block from the PC

With this function a whole block of data can be read from the PC. The function is just starting the
job, and does not wait until the PC is executing it, but returns immediately to where it was called.
Therefore the data can be read not before the function 'status call' was executed (see there).

Register high In low Out

AX $21 typ status
BX size bst
CX adr
DX len

typ element area (type) of data for single element in the PC (DB, MB, ...)
size data size of block data (ident. whether single bytes are to be exchanged)

0F(hex) data block of bytes (no exchange)
1F(hex) data block of words (exchange of high- and low-byte)
2F(hex) data block of doublewords (exchange of all 4 bytes)

bst module number, is to be set for element areas (type) DB, DX , FX ...
if element area (type) is absolute, then here are high-order bits of adr.

adr initial address in the area
len number of data in words !! (also if size is byte or doubleword)

status < 0 error number because of error
= 0 job number to call status

Note:
For reasons of executing an automatical adjustment of data during the transmission, the type of the
data in a block (bytes, words, doublewords) has to be specified. One block can only contain data of
the same type. Concernig words and doublewords for every single data an exchange of the bytes is
executed correspondingly.

This function does not return data! If the job status is 'finished without error', the data can be passed
by calling the function status call.

A block read job can only be started, if bank 2 is empty, that means, no variable read jobs and no
block read job may be in processing status.

To enable, that a finished reading job will not be overwritten with a new job before data are passed,
the job is blocked. After starting a job, its status is to be checked as long as the job is finished with
or without error. If the status of the job is 'finished without error', data will be copied to the AT with
the address specified. If no status call is executed, the job remains blocked, and possibly no further
read jobs can be started.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 149

6.4.2.4 Write a Variable to the PC

This function enables to write single data (bit, byte, word,...) to the memory of the PC. When
calling, the address of a variable to be written must be specified. The function transmits its value to
the bank and does not wait for the PC to read the data, but returns immediately to where it was
called.

Register high In low Out

AX $31 typ status
BX size bst
CX adr
DX - bit
SI offset
DS segment

typ element area (type) of data for single element in PC (DB, MB, ...)
size code of data size (Bit, Byte, ...)
bst module number, is to be set only for element area (type) DB or DX

if element area (type) is absolute, here are the high-order bits of adr.
adr initial address in area
bit bit number if data size is bit or semaphor.
offset offset of variable address (in AT)
segment segment of variable address (in AT)

status < 0 error number because of error
129-255 job number to call status

Note:
Different to read jobs, a write job is not being blocked, nevertheless the job status as well should be
as long called as the job is finished with or without error.

Depending on the element size, the pointer to the data in the AT is to interpreted differently:
- bit or semaphore:

pointer is the address of a byte, the bit is read by bit number 0.
- Byte, left byte, right byte: the pointer is the address of a byte. The byte is

read from the memory cell.
- Word:

the pointer is the address of a word. High- and low-byte are exchanged
at the transmission.

- Doubleword/extended word:
the pointer is the address of a extended word, the extended word is read and
the order of all 4 bytes is reverse.

Linkage with PLC

150 VIPA GmbH CP486 ⋅ 00/14

6.4.2.5 Write a Block to the PC

With this functions a whole data block can be transmitted to the PC. When calling, a pointer to the
data block is to be specified. The function writes the data to the bank and returns immediately to
where it was called. There is no delay for the PC to read the data. Subsequently the data block is
competely available in the CP and could be overwritten for example.

Register high In low Out

AX $31 typ status
BX size bst
CX adr
DX len
SI offset
DS segment

typ data type of data for block element in PC (DB, MB, ...)
size data size of block data

0F(hex) data block of bytes
1F(hex) data block of words
2F(hex) data block of doublewords

bst module number where DB, DX, FB is relevant,
contains at typ = absolute the high-bits of adr

adr initial address in the area
len number of data in words !!
offset offset of block address (in AT)
segment segment of block address (in AT)

status < 0 error number because of error
128 job number to call status

Note:
For reasons of executing an automatical adjustment of data during the transmission, the type of the
data in a block (bytes, words, doublewords) has to be specified. One block can only contain data of
the same type. Concernig words and doublewords for every single data, an exchange of the bytes is
executed correspondingly.

A block write job can only be started, if bank 3 is empty, that means, no variable write jobs and no
block write job may be in processing status.

A block write job is blocking the bank. After starting a job, its status is to be checked as long as the
job is finished with or without error. If the status of the job is 'finished without error', data will be
copied to the PC with the address specified. If no status call is executed, the job remains blocked,
and possibly no further read jobs can be started.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 151

6.4.2.6 Read Job Status

With this function, the status of an earlier started job can be called. For read jobs, variable and block
read jobs, this function copies data to a specified address to the CP, if the job status is 'finished
without error'.

Register high In low Out

AX $20/$30 a_nr status
SI offset
DS segment

fn function number for status call
$20 for read jobs
$30 for write jobs

a_nr job number
offset offset of data address (in AT)

to be specified only for read jobs (variables and block).
segment segment of data address (in AT)

to be specified only for read jobs (variables and block).

status < 0 job finished with error
error messages of PC are added with FF00h.

1 job still in process
2 job status not defined
3 job finished without error

The following procedure is advisable for the status call:
- If the job is still "in processing", the status function has to be called as long as the status

changes.

- Concerning write jobs (bank 3): if the job was "finished without error", then the data were
written to the PC. For block elements, the bank has been released.

- Concerning read jobs (bank 2): If the job is 'finished without error', and a pointer was
specified for the data, the data will be copied to the specified address in the AT. Depending on
the specified data size, an exchange of bytes will be executed, if neccessary. The job block
will be released, in order to enable the execution of new jobs. If the address NULL (0:0) is
specified as a pointer, no data will be copied, but the job will be released as well.

- If the job status is 'not defined' the job was already finished earlier, but was not overwritten by
a new job. If this job was a read job and a pointer unequal to NULL was specified, the data
will be copied to the specified destination address.

- If the job is "finished with error", then the job block was enabled if a read job or a block job is
concerned.

Linkage with PLC

152 VIPA GmbH CP486 ⋅ 00/14

- For a read job for single variables, the pointer is to be interpreted differently, depending on the
element size:
- Bit or semaphore:

The pointer is the address of a byte, the bit will be written to bit number 0, the whole
byte will be overwritten.

- Byte, left byte, right byte:
The pointer is the address of a byte. The byte will be written to the storage cell.

- Word:
The pointer is the address of a word. High and low-byte will be interchanged during
transmission.

- Doubleword/extended word:
The pointer is the address of a exetended word, the order of all 4 bytes will be
interchanged and be written to the extended word.

- For a read job for a data block, the pointer is to be interpreted differently, depending on the
element size:
- Byte:

The pointer is the address of a block of bytes, the individual bytes will be transmitted
unchanged from the PC.

- Word:
The pointer is the address of a block of words. High and low byte will be interchanged
for every individual word during transmission.

- Doubleword/extended word:
The pointer is the address of a block of exetended words. All 4 bytes of every individual
exetended word will be interchanged during transmission.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 153

6.4.2.7 Abort All Jobs of a Bank

Register high In low Out

AX fn status

fn function number for status call
$28 abort all read jobs
$38 abort all write jobs

status < 0 error number because error occurred
0 all jobs were aborted.

All not yet finished write or read jobs can be aborted by means of this function. It must not be
differed between variable and block jobs. Also if there were no jobs active in the bank, the function
answers with the return value 0.

Linkage with PLC

154 VIPA GmbH CP486 ⋅ 00/14

6.4.2.8 Read Status of Process Image

Register high In low Out

AX $70 - status

status 0 no process image available
1..255 current process image counter

The current value of the process image counter (bank 7 address 3FEh) can be read by means of this
function. If the value is 0 then no process image is available.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 155

6.4.2.9 Read Area of Process Image

Register high In low Out

AX $71 typr status
BX adr
CX len
SI offset
DS segment

typ data type of process image (EB, MB)
adr initial address in area
len number of data in bytes or words (depending on TYPE)!!
offset offset of data address (in AT)
segment segment of data address (in AT)

status < 0 error number because of error
= 0 process image not available
> 0 counter for process image (as for status function)

This function is used to read an area of the current process image. When accessing single areas, then
the length of the area is supervised, e.g. cannot be read from EB126 with the length of 4 bytes
because only 128 byte EB are available.

The length is input in words for timer and counter access, and in bytes for all other types. For timer
and counter the high- and low byte of every word is exchanged also at the transfer, so that the data
in the AT can be correctly processed as words.

By setting the type ABSOLUT, an optional process image sector can be read, also affecting other
areas. The length is given in bytes, also if it is read from timer or counter range. If a range of timer
or counter is read, then high- and low byte is changed again, too !!

Tab. Data types for process image:

06 counter (length in words)
07 timer (length in words)
08 marker (length in bytes)
09 EB (length in bytes)
0A AB (length in bytes)
0F absolute access to process image (length in bytes)

Linkage with PLC

156 VIPA GmbH CP486 ⋅ 00/14

6.4.2.10 Error Numbers of CP for Banks 2, 3 and 7:

hex dec. description

FFFF -1 invalid data type

FFFE -2 length error (e.g. address too big, bit number too high)

FFFD -3 invalid data size (wrong value at single or block job)

FFFC -4 data type for this CPU not possible

FFFB -5 bank full, 127 single jobs in the bank, or at least 1 single element-

and a block job are to be started.

FFFA -6 bank access disabled for 10 sec (PC stop probably)

FFF9 -7 job/bank is still blocked (job status was not checked

in order to de-block the job).

FFF8 -8 wrong job number for status function (e.g. job no > 255)

FFF7 -9 faulty source data pointer (address NULL was entered in write job)

FFF6 -10 job not in process (not used !!!!)

FF 255 invalid function call

EE 238 job stopped during initialization

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 157

6.4.3 Interface for Turbo-Pascal (from Version 4.0)

To facilitate calling functions of COM-driver from Pascal programs, a Turbo-Pascal-Unit has been
created which makes available all functions of the service interrupt INT 78 to be easy called. For
every driver function an adequate Pascal-procedure is defined which supplies registers, calls
interrupts and returns values. Thus, also users being not familiar with system-oriented programming
on AT, are able to utilize fully all driver feasibilities.

All required functions, data types and constants are included in the Unit CP386LIB. This has to be
entered with "USES CP386Lib" into the application program if it should be used in a Pascal-
program. It must be ensured that the compiled Unit CP386LIB.TPU is contained in the directory
where Turbo-Pascal traces for units. Setting occurs via the menu items "Options| Directories| EXE
& TPU-directory" (cf. Manual or Help-Functions for Turbo-Pascal).

Following sections show only a survey of the individual functions. For a detailed description
including all important information see function descriptions of the previously described sections.

6.4.3.1 Function CP-Status Call

FUNCTION CP_Info(VAR inforec : CP386InfoRec) : INTEGER;

Data structures:

TYPE CP386InfoRec =
RECORD

CP_id : WORD; (* identification: CP386 value= $C386 *)
VGA_ver, BIOS_ver : BYTE; (* version numbers: VGA-BIOS and BIOS *)
DRV_ver: BYTE; (* identification: software version *)
CPU_AG : BYTE; (* identification CPU in PC *)
CP_reg, S5_reg : BYTE; (* CP- and PLC-status register *)

END;

Data structure for the general status info function and the components are defined corresponding to
CP486 values.

This function calls the driver function "general status information", but previously it is checked
whether the driver is installed. If not, the function returns the value -1. If the COM-driver is
installed, value 0 is returned and the components of info-structure inforec are set adequate. The
component CP_id is always identified with the value $C386.

Linkage with PLC

158 VIPA GmbH CP486 ⋅ 00/14

6.4.3.2 Read a Single Element from the PC

FUNCTION CP_read_AG(size, typ, bst : BYTE; adr : longint; bit : BYTE) : INTEGER;

size: data size of single elements (see Tab. 1)
typ: data type for single elements (see Tab. 2)
bst: module number
adr: address in the module or absolute address
bit: bit number

Return: job number or negative number if there is an error

This function calls the driver function "read a single element from the PC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

VAR a_nr, (* job number for read job *)

stat : INTEGER; (* momentaneous job status *)

wert : BYTE; (* value read from the PC *)

BEGIN

(* start job *)

a_nr := CP_read_AG(LBYTE_ELM, DB_SNG, 10, 1, 0);

IF a_nr < 0 (* error occurred *)

THEN WriteLn('job finished with error: ', a_nr);

ELSE BEGIN (* a_nr contains job number *)

REPEAT

stat := CP_stat_AG(a_nr, Addr(value)); (* job status/fetch data *)

UNTIL stat <> REQ_WRKN; (* as long as job is ready with or without errors *)

CASE stat OF

REQ_NO_ERR: WriteLn('date: ', value, ' has been read');

REQ_UNDEF: WriteLn('job status nondefined,date: ',value, ' read');

ELSE WriteLn('job is ready with error: ', stat);

END;

END;

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 159

6.4.3.3 Read a Block from the PC

FUNCTION CP_readn_AG(size, typ, bst:BYTE; adr:longint; len:WORD):integer;

size: data size of block elements (see Tab.4)
typ: data type of block elements (see Tab. 3)
bst: module number
adr: address in module or absolute address
len: number of data in words

Return: job number or negative number if there is an error

This function calls the driver function "read a block from the PC". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If the driver has detected an error during the execution, then the respective error
message (negative number) is returned as function value. If the function can be executed without
errors, the job number 0 is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

VAR a_nr, (* job number for read job*)

stat : INTEGER; (* momentaneous job status *)

buff : ARRAY[1..50] OF INTEGER (* data read from the PC *)

BEGIN

(* start job *)

a_nr := CP_readn_AG(W_BLOCK, DB_BLK, 5, 10, 100);

IF a_nr < 0 (* error occurred *)

THEN WriteLn('job finished with error: ', a_nr);

ELSE BEGIN (* a_nr contains job number *)

REPEAT

stat := CP_stat_AG(a_nr, Addr(buf)); (* job status/fetch data *)

UNTIL stat <> REQ_WRKN; (* as long as job is ready with or without errors *)

CASE stat OF

REQ_NO_ERR: WriteLn(buffer was read');

REQ_UNDEF: WriteLn('job status nondefined, buffer was read');

ELSE WriteLn('job is ready with error: ', stat);

END;

END;

Linkage with PLC

160 VIPA GmbH CP486 ⋅ 00/14

6.4.3.4 Write a Single Element to the PC

FUNCTION CP_write_AG(size, typ, bst : BYTE; adr: longint; bit: BYTE; p: POINTER)
: integer;

size: data size (see Tab. 1)
typ: data type single elements (see Tab. 2)
bst: module number
adr: address in module or absolute address
bit: bit number
p: pointer to date to be written

for data type bit, semaphore or byte: pointer to a byte
for data type word: pointer to a word
for data type doubleword: pointer to a doubleword

Return: job number or negative number if there is an error

This function calls the driver function "write a single element into the PC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

VAR a_nr, (* job number for read job*)

stat : INTEGER; (* momentaneous job status *)

wert : BYTE; (* value to be written *)

BEGIN

...

(* start job *)

wert := $7E;

a_nr := CP_write_AG(BYTE_ELM, DB_SNG, 10, 1, 0, Addr(value));

IF a_nr < 0 (* error occurred *)

THEN WriteLn('job finished with error: ', a_nr);

ELSE BEGIN (* a_nr contains job number *)

REPEAT

stat := CP_stat_AG(a_nr, NIL); (* read job status *)

UNTIL stat <> REQ_WRKN; (* as long as job is ready with or without errors *)

CASE stat OF

REQ_NO_ERR: WriteLn('date: ', value, ' was written');

REQ_UNDEF: WriteLn('job status nondefined.');

ELSE WriteLn('job is ready with error: ', stat);

END;

END;

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 161

6.4.3.5 Write a Block into the PC

FUNCTION CP_writen_AG(size, typ, bst : BYTE; adr : longint; len : word;
p : POINTER) : integer;

size: data size of block elements (see Tab.4)
typ: data type block elements (see Tab. 3)
bst: module number
adr: address in module or absolute address
len: number or data in words
p: pointer to the data block to be written

Return: job number or negative number if there was an error

This function calls the driver function "write a block into the PC". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If the driver has detected an error during the execution, then the respective error
message (negative number) is returned as function value. If the function can be executed without
errors, the job number $80 (hex) is returned as function value.

Recommended calling method

VAR a_nr, (* job number for read job*)

stat : INTEGER; (* momentaneous job status *)

i : INTEGER;

buff : ARRAY[1..100] OF BYTE; (* data to be written *)

BEGIN

...

FOR i := 1 TO 100 DO

buff[i] := i; (* preset data buffer *)

(* start job *)

a_nr := CP_writen_AG(B_BLOCK, DB_BLK, 5, 10, 100, Addr(buff));

IF a_nr < 0 (* error occurred *)

THEN WriteLn('job finished with error: ', a_nr);

ELSE BEGIN (* a_nr contains job number *)

REPEAT

stat := CP_stat_AG(a_nr, NIL); (* read job status *)

UNTIL stat <> REQ_WRKN; (* as long as job is ready with or without errors *)

CASE stat OF

REQ_NO_ERR: WriteLn('buffer was written');

REQ_UNDEF: WriteLn('job status nondefined.');

ELSE WriteLn('job is ready with error: ', stat);

END;

END;

Linkage with PLC

162 VIPA GmbH CP486 ⋅ 00/14

6.4.3.6 Read Job Status

FUNCTION CP_stat_AG(a_nr : INTEGER; p: POINTER): INTEGER;

a_nr: job number of the job to be tested
p: pointer to date or data block in AT-memory

(to be preset only for read jobs with single and block element)
for data type bit, semaphore or byte pointer to a byte
for data type word, pointer to a word
for data type doubleword, pointer to a doubleword
for data type block, pointer to buffer for data block

Return: job status or negative number if there is an error

This function calls the driver function "read job status". The registers are preset according to the
transferred parameters when calling up. Meaning of the parameters is described in the section of
driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, the
job status (see tab. 5) is returned.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 163

6.4.3.7 Abort all Jobs of a Bank

FUNCTION CP_cncl_AG(a_nr : BYTE): INTEGER;

a_nr: identification for bank 2 or 3
$00 abort all still active jobs of bank 2
$80 abort all still active jobs of bank 3

Return: 0 or negative number if there is an error

This function calls the driver function "abort all jobs of a bank". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, i.e.
all jobs have been aborted, then 0 is returned.

Linkage with PLC

164 VIPA GmbH CP486 ⋅ 00/14

6.4.3.8 Read Status of Process Image

FUNCTION CP_stat_PA : BYTE;

Return: process image counter

This function calls the driver function "status call process image". This function returns the process
image counter.

6.4.3.9 Read Area of Process Image

FUNCTION CP_read_PA(typ : BYTE; adr, len : WORD; p : POINTER) : INTEGER;

typ: data type process image (see Tab. 6)
adr: address in the area or absolute address
len: number of data (bytes or words) depending on the type
p: pointer to a data buffer in the storage

Return: process image counter

This function calls the driver function "read a process image area". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the current value of the process image counter is returned.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 165

6.4.3.10 Constants

Following constants are already predefined. It is recommended to use these constants also in the
program text for reasons of clearness and better readability. Moreover, adaptations attended to
possible later changes of the COM-driver can be easier carried out.

Tab. 1 predefined constants for data sizes:

CONST
BIT_ELM = $00; (* bit *)
SEMA_ELM = $01; (* bit as semaphore *)
BYTE_ELM = $02; (* byte *)
LBYTE_ELM = $02; (* left byte of a word *)
RBYTE_ELM = $03; (* right byte of a word *)
WORD_ELM = $04; (* word *)
DWORD_ELM = $05; (* doubleword *)
BLOCK_ELM = $07; (* block *)

Tab. 2 predefined constants for data types for single elements

CONST
DB_SNG = $00; (* DB *)
DX_SNG = $01; (* DB in external memory *)
BA_SNG = $02; (* BA *)
BB_SNG = $03; (* BB *)
BS_SNG = $04; (* BS *)
BT_SNG = $05; (* BT *)
Z_SNG = $06; (* counter*)
T_SNG = $07; (* timer *)
MB_SNG = $08; (* marker *)
EB_SNG = $09; (* input area *)
AB_SNG = $0A; (* output area *)
PB_SNG = $0B; (* P-periphery *)
QB_SNG = $0C; (* Q-periphery *)
ABS_SNG = $0F; (* absolute memory *)

Linkage with PLC

166 VIPA GmbH CP486 ⋅ 00/14

Tab. 3 predefined constants for data types for block elements

CONST
DB_BLK = $00; (* data module *)
DX_BLK = $01; (* DB in external memory *)
BA_BLK = $02; (* BA *)
BB_BLK = $03; (* BB *)
BS_BLK = $04; (* BS *)
BT_BLK = $05; (* BT *)
FB_BLK = $06; (* FB *)
FX_BLK = $07; (* FB in external memory *)
OB_BLK = $08; (* OB *)
PB_BLK = $09; (* PB *)
SB_BLK = $0A; (* SB *)
MB_BLK = $0B; (* MB *)
ABS_BLK = $0F; (* absolute memory *)

Tab. 4 predefined constants for the data type for block elements:

CONST
B_BLOCK = $0F; (* type: block of bytes *)
W_BLOCK = $1F; (* type: block of words *)
D_BLOCK = $2F; (* type: block of doublewords)

Tab. 5 identifications for job status

CONST
REQ_WRKN = $01; (* job in process *)
REQ_UNDEF = $02; (* job status undefined *)
REQ_NO_ERR = $03; (* job ready without error *)

Tab. 6 predefined constants for data types for process image

CONST
Z_PA = $06; (* counter *)
T_PA = $07; (* timer *)
MB_PA = $08; (* marker *)
EB_PA = $09; (* input area *)
AB_PA = $0A; (* output area *)
ABS_PA = $0F; (* absolute block in PA (process image) *)

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 167

Tab. 7 predefined constants for error messages: bank 2, 3 and 7

CONST
ERR_S5_TYP = $01; (* invalid element type *)

With a single-element access with the element type DX_SNG,
BA_SNG, BB_SNG, BT_SNG or QB_SNG or with a block element
access with element type DX_BLK, BA_BLK, BB_BLK, BT_BLK or
FX_BLK the programme tried to access data in a programmable
controller of the type 115U. However, these element types do not exist
in this programmable controller type.

Correction: To correct the parameter „typ“ in the function call
of the PC user software.

ERR_S5_BST = $02; (* module not available *)

With a single-element access with element type DB_SNG or with a
block element type DB_BLK the programme tried to access a not
existing module.

Correction: To create data block in the programmable
controller or to correct parameter „bst“ in the
function call of the PC-user software.

ERR_S5_ELM = $03; (* element not available *)

With a single-element access with element type DB_SNG or with a
block element access with element type DB_BLK the programme tried
to access data in a data block which are not available.

Correction: To extend the data block in the programmable
controller correspondingly or to correct the
parameter „adr“ or „len“ in the function call of the
PC user software.

With a single-element access with element type Z_SNG or T_SNG the
programme tried to access timer or counter with a number > 127.

Correction: To correct the parameter „adr“ in the function call
of the PC user software.

With a single-element access with element type MB_SNG the
programme tried to access flags with a number > 199 with the size of
element Byte, with number > 198 with the size of element word or with
number > 196 with the size of ement douple word.

Correction: To check the parameter „adr“ in the function call of
the PC user software for valence.

With a single-element access with element type EB_ - or AB_SNG the
programme tried to access the process image of the I/O range with
number > 127 with the element size Byte, with number > 126 with
element size word or with number > 124 with element size douple
word.

Correction: To check the parameter „adr“ in the function call of
the PC user software for valence.

With a single-element access with element type PB_SNG the
programme tried to access elements of the P-peripherals with number
> 255 with element size Byte, with number > 254 with element size
word or with number > 252 with element size douple word.

Linkage with PLC

168 VIPA GmbH CP486 ⋅ 00/14

Correction: To check the parameter „adr“ in the function call of
the PC user software for valence.

ERR_S5_SIZE = $04; (* invalid element size *)

With a single-element access with element type Z_SNG or T_SNG the
programme tried to access timer or counter, whereas the parameter
element size was not set to word access (WORD_ELM).

Correction: To correct the parameter „size“ in the function call
of the PC user software.

With a single-element access with element type MB_SNG or
ABS_SNG the programme tried to access flags or absolute addresses
with the parameter element size RBYTE_ELM.

Correction: To correct the parameter „size“ in the function call
of the PC user software.

With a single-element access with element type EB_SNG or AB_SNG
the programme tried to access inputs or outputs in the process image
with the parameter element size SEMA_ELM or RBYTE_ELM.

Correction: To correct the parameter „typ“ in the function call of
the PC user software.

With a single-element access with element type PB_SNG the
programme tried to access the P-peripherals with the parameter
element size BIT_ELM, SEMA_ELM or RBYTE_ELM.

Correction: To correct the parameter „typ“ in the function call of
the PC user software.

With a reading single-element access with element type ABS_SNG
the programme tried to read absolute addresses with element size
SEMA_ELM. This type of access is only possible in writing under
absolute addressing! When single bits are to be read then the element
size BIT_ELM has to be used.

Correction: To correct the parameter „typ“ in the function call of
the PC user software.

ERR_S5_BIT = $05; (* Bit-number too high *)

With a single-element access with element type MB_SNG or
ABS_SNG and the element size BIT_ELM or SEMA_ELM the
programme tried to access a flag bit or an absolute address bit with a
bit number > 7 (15).

Correction: To correct the parameter „bit“ in the function call of
the PC user software.

With a single-element access with element type EB_SNG or AB_SNG
the programme tried to access an I/O-BIT with a bit number > 7.

Correction: To correct the parameter „bit“ in the function call of
the PC user software.

ERR_S5_STRT = $06; (* invalid starting address *)

With a block element access with element type „module“_BLK the
programme tried to transfer blocks via modules whereas the relative
starting address in the block is> 32767.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 169

Correction: To correct the parameter „adr“ in the function call
of the PC user software.

ERR_S5_LEN = $07; (* invalide block length *)

With a block element access under all element types the programme
tried to transfer blocks with a length > 504.

Correction: To correct the parameter „len“ in the function call of
the PC user software.

ERR_S5_ADR = $08; (* Address too big *)

With a single- or block element access with element type ABS_SNG
the programme tried to addess an address
> FFFFh in a programmable controller of the typee 115U. However,
the CPUs (up to CPU 944) have an address range of only 64 KB.

Correction: To correct the parameter „adr“ in the function call
of the PC user software.

ERR_S5_QVZ = $09; (* QVZ/ADF in the programmable controller with reading/writing *)

The programme tried to access an address range which is physically
not available.
The programmable controllers of the type 135 and 155 make this error
message available. A programmable controller of the type 115U would
be set to STOP in this case.

Correction: To correct the parameters „typ“ or „adr“ in the
function call of the PC user software.

ERR_S5_944 = $0A; (* CPU 944: module in prog.bank *)

With a block element access with element type „module“_BLK the
programme tried to access a module which is not in the data block.
(This only concerns the CPU 944 form the programmable controller
type 115U)

Correction: To create a module in the programmable controller
in the data block bank (via BIB-Nr. 19285) or to
correct the function call in the PC user software.

Linkage with PLC

170 VIPA GmbH CP486 ⋅ 00/14

6.4.4 Interface to Turbo-C (2.0 and C++ from 1.0), Microsoft-C 6.0

To facilitate calling functions of COM-driver from C-programs, a library file has been created
which makes available all functions of the service interrupt INT 78 to be easy called. For every
driver function a respective C-function is defined which supplies registers, calls interrupts and
returns values. Thus, also users being not familiar with system-oriented programming on AT, are
able to utilize fully all driver feasibilities.

Data types and constants for element sizes, element types and error numbers as well as function
prototypes of of functions in ANSI-C-style described in the following are defined in the Include File
"CP386DEF.H". The Include-File must be quoted in the application program.

All required functions are implemented in the CP386LIB.C file. The CP386LIB.O file is also to be
implemented if it is to be used in a program. Depending on the programming environment and
version, the file is to be packed into the project file (Turbo-C) or Depencie List (Microsoft-C) or
into the Make-File. For detailed information see the respective manuals.

Reference: in "CP386LIB.H" is
byte defined as unsigned char
word defined as unsigned short.

6.4.4.1 Function CP Status Call

Data structures:
typedef struct {

word CP_id; /* identification: CP386 value = $C386 */
byte VGA_ver, BIOS_ver; /* version numbers: VGA-BIOS and BIOS */
byte DRV_ver; /* identification: software version */
byte CPU_AG; /* identification CPU in PC */
byte CP_reg, S5_reg; /* CP- and PLC-status registers */
} CP386_InfoBlk; /* info-block */

Data structure for the general status info function, the components are preset according to values of
the CP486.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 171

6.4.4.2 Read a Single Element from the PC

int CP_read_AG(byte size, byte typ, byte bst, unsigned long adr, byte bit);

size: data size (see Tab. 1)
typ: data type single elements (see Tab. 2)
bst: module number
adr: address in module or absolute address
bit: bit number

Return: job number or negative number if there is an error

This function calls the driver function "read a single element from the PC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job number for read job*/

int stat; /* momentaneous job status */

int time_count=4000; /* timeout counter (4 seconds) */

byte wert ; /* value read from the PC */

/* start job */

a_nr = CP_read_AG(LBYTE_ELM, DB_SNG, 10, 1, 0);

if(a_nr < 0) /* error occurred */

printf("job finished with error: %d\n", a_nr);

else { /* a_nr contains job number */

do {

stat = CP_stat_AG(a_nr, &wert); /* job status/fetch data */

} while((time_count > 0)&&(stat == REQ_WRKN));

/* as long as job is ready with or without errors*/

switch(stat) {

case REQ_NO_ERR: printf("date: %d was read\n", wert);

break;

case REQ_UNDEF: printf("job status nondefined, date: %d read\n", wert);

break;

default: printf("job is ready with error: %d\n", stat);

}

}

Linkage with PLC

172 VIPA GmbH CP486 ⋅ 00/14

6.4.4.3 Read a Block from the PC

int CP_readn_AG(byte size, byte typ, byte bst, unsigned long adr, word len);

size: data size of block elements (see Tab.4)
typ: data type block elements (see Tab. 3)
bst: module number
adr: address in module or absolute address
len: number of data in words

Return: job number 0 or negative number if there is an error

This function calls the driver function "read a block from the PC". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If the driver has detected an error during the execution, then the respective error
message (negative number) is returned as function value. If the function can be executed without
errors, the job number 0 is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job number for read job*/

int stat; /* momentaneous job status */

int time_count=4000; /* timeout counter (4 seconds) */

int buff[100] ; /* value read from the PC */

/* start job */

a_nr = CP_readn_AG(W_BLOCK, DB_BLK, 5, 10, 100);

if(a_nr < 0) /* error occurred */

printf("job finished with error: %d\n", a_nr);

else { /* a_nr contains job number */

do {

stat = CP_stat_AG(a_nr, &buff); /* job status/fetch data */

} while((time_count > 0)&&(stat == REQ_WRKN));

/* as long as job is ready with or without errors */

switch(stat) {

case REQ_NO_ERR: printf("Data have been readed\n", value);

break;

case REQ_UNDEF: printf("job status nondefined\n");

break;

default: printf("job is ready with error: %d\n", stat);

}

}

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 173

6.4.4.4 Write a Single Element into the PC

int CP_write_AG(byte size, byte type, byte bst, unsigned long adr, byte bit,
void far *p);

size: data size (see Tab. 1)
typ: data type single elements (see Tab. 2)
bst: module number
adr: address in module or absolute address
bit: bit number
p: pointer to the date to be written in the AT-memory

for data type bit, semaphore or byte pointer to a byte
for data type word pointer to a word
for data type doubleword pointer to a doubleword

Return job number or negative number is there is an error

This function calls the driver function "write a single element into a PC". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If the driver has detected an error during the execution, then the
respective error message (negative number) is returned as function value. If the function can be
executed without errors, the job number is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job number for read job*/

int stat; /* momentaneous job status */

int time_count=4000; /* timeout counter (4 seconds) */

byte wert = 0x5A; /* value read from the PC */

/* start job */

a_nr = CP_write_AG(LBYTE_ELM, DB_SNG, 10, 1, 0, &wert);

if(a_nr < 0) /* error occurred */

printf("job finished with error: %d\n", a_nr);

else { /* a_nr contains job number */

do {

stat = CP_stat_AG(a_nr, NULL); /* read job status */

} while((time_count > 0)&&(stat == REQ_WRKN));

/* as long as job is ready with or without errors */

switch(stat) {

case REQ_NO_ERR: printf("date: %d was written\n", value);

break;

case REQ_UNDEF: printf("job status nondefined\n");

break;

default: printf("job is ready with error: %d\n", stat);

}

}

Linkage with PLC

174 VIPA GmbH CP486 ⋅ 00/14

6.4.4.5 Write a Block into the PC

int CP_writen_AG(byte size, byte typ, byte bst, unsigned long adr, word len,
void far *p);

size: data size of block elements (see Tab.4)
typ: data type block elements (see Tab. 3)
bst: module number
adr: address in module or absolute address
len: number of data in words
p: pointer to the data block to be written in the AT-memory

Return: job number $80 or negative number if there is an error

This function calls the driver function "write a block into a PC". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If the driver has detected an error during the execution, then the respective error
message (negative number) is returned as function value. If the function can be executed without
errors, the job number $80 (hex) is returned as function value.

Recommended calling method

To process correctly driver functions, the following scheme should be adhered when executing
functions. Otherwise the bank, for example, can be blocked (cf. sections about driver functions).

int a_nr; /* job number for read job*/

int stat; /* momentaneous job status */

int time_count=4000; /* timeout counter (4 seconds) */

int i;

byte buff[100]; /* data to be written */

for(i = 0; i< 100; i++)

buff[i] = (byte)i; /* preset data buffer */

/* start job */

a_nr = CP_writen_AG(B_BLOCK, DB_BLK, 5, 10, 100, &buff);

if(a_nr < 0) /* error occurred */

printf("job finished with error: %d\n", a_nr);

else { /* a_nr contains job number */

do {

stat = CP_stat_AG(a_nr, NULL); /* read job status */

} while(stat == REQ_WRKN); /* as long as job is ready with or without errors */

switch(stat) {

case REQ_NO_ERR: printf("data have been written\n", value);

break;

case REQ_UNDEF: printf("job status nondefined\n");

break;

default: printf("job is ready with error: %d\n", stat);

}

}

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 175

6.4.4.6 Read Job Status

int CP_stat_AG(int r, void far *p);

a_nr: job number of the job to be tested
p: pointer to date or data block in AT-memory

(only for read jobs with single and block element
pointer to a byte for data variables bit, semaphore or byte
pointer to a word for data type word
pointer to a doubleword for data type doubleword
pointer to buffer for data block for data type block

Return: job status or negative number if error

This function calls the driver function "status call for job". The registers are preset according to the
transferred parameters when calling up. Meaning of the parameters is described in the section of
driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, the
job status (see tab. 5) is returned.

Linkage with PLC

176 VIPA GmbH CP486 ⋅ 00/14

6.4.4.7 Abort All Jobs of a Bank

int CP_cncl_AG(int a_nr);

a_nr: code for bank 2 or 3
$00 abort all still active jobs of bank 2
$80 abort all still active jobs of bank 3

This function calls the driver function "abort all jobs of a bank". The registers are preset according
to the transferred parameters when calling up. Meaning of the parameters is described in the section
of driver function. If there was an error during the job execution, then the respective error message
(negative number) is returned as function value. If the function can be executed without errors, i.e.
all jobs have been aborted, then 0 is returned.

6.4.4.8 Read Status of Process Image

byte CP_stat_PA();

Return: process image counter

This function calls the driver function "status call process image". The function returns the process
image counter.

6.4.4.9 Read Area of Process Image

int CP_read_PA(byte typ, word adr, word len, void far *p);

typ: data type single elements (see Tab. 5)
bst: module number
adr: address in module or absolute address
len: number of data (bytes or words) depending on the type
p: pointer to data buffer in AT-memory

Return: process image counter

This function calls the driver function "read an area of process image". The registers are preset
according to the transferred parameters when calling up. Meaning of the parameters is described in
the section of driver function. If there was an error during the job execution, then the respective
error message (negative number) is returned as function value. If the function can be executed
without errors, the current value of the process image counter is returned.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 177

6.4.4.10 Constants

Following constants are already predefined. It is recommended to use these constants also in the
program text for reasons of clearness and better readability. Moreover, adaptations attended to
possible later changes of the COM-driver can be carried out easier.

Tab. 1 predefined constants for data sizes

#define BIT_ELM 0x00 /* bit */
#define SEMA_ELM 0x01 /* bit as semaphore */
#define BYTE_ELM 0x02 /* byte */
#define LBYTE_ELM 0x02 /* left byte of a word */
#define RBYTE_ELM 0x03 /* right byte of a word */
#define WORD_ELM 0x04 /* word */
#define DWORD_ELM 0x05 /* doubleword */
#define BLOCK_ELM 0x07 /* block */

Tab. 2 predefined constants for data types for single elements

#define DB_SNG 0x00 /* DB */
#define DX_SNG 0x01 /* DB in external memory */
#define BA_SNG 0x02 /* BA */
#define BB_SNG 0x03 /* BB */
#define BS_SNG 0x04 /* BS */
#define BT_SNG 0x05 /* BT */
#define Z_SNG 0x06 /* counter */
#define T_SNG 0x07 /* timer */
#define MB_SNG 0x08 /* marker */
#define EB_SNG 0x09 /* input area */
#define AB_SNG 0x0A /* output area */
#define PB_SNG 0x0B /* P-peripherals */
#define QB_SNG 0x0C /* Q-peripherals */
#define ABS_SNG0x0F /* absolute memory */

Linkage with PLC

178 VIPA GmbH CP486 ⋅ 00/14

Tab. 3 predefined constants for data types for block elements

#define DB_BLK 0x00 /* data module */
#define DX_BLK 0x01 /* DB in external memory */
#define BA_BLK 0x02 /* BA */
#define BB_BLK 0x03 /* BB */
#define BS_BLK 0x04 /* BS */
#define BT_BLK 0x05 /* BT */
#define FB_BLK 0x06 /* FB */
#define FX_BLK 0x07 /* FB in external memory */
#define OB_BLK 0x08 /* OB */
#define PB_BLK 0x09 /* PB */
#define SB_BLK 0x0A /* SB */
#define MB_BLK 0x0B /* MB */
#define ABS_BLK 0x0F /* absolute memory */

Tab. 4 predefined constants for data type for block elements

#define B_BLOCK 0x0F /* type: block with bytes */
#define W_BLOCK 0x1F/* type: block with words */
#define D_BLOCK 0x2F /* type: block with extended words */

Tab. 5 identifications for job status

#define REQ_WRKN 0x01 /* job in processing */
#define REQ_UNDEF 0x02 /* job status not defined */
#define REQ_NO_ERR 0x03 /* job ready without errors */

Tab. 6 predefined constants for data types for process image

#define Z_PA 0x06 /* counter*/
#define T_PA 0x07 /* timer */
#define MB_PA 0x08 /* marker */
#define EB_PA 0x09 /* input area */
#define AB_PA 0x0A /* output area */
#define ABS_PA0x0F /* absolute block in PA */

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 179

Tab. 7 predefined constants for error messages: bank 2, 3 and 7

CONST
ERR_S5_TYP = $01; (* invalid element type *)

With a single-element access with the element type DX_SNG,
BA_SNG, BB_SNG, BT_SNG or QB_SNG or with a block element
access with element type DX_BLK, BA_BLK, BB_BLK, BT_BLK or
FX_BLK the programme tried to access data in a programmable
controller of the type 115U. However, these element types do not exist
in this programmable controller type.

Correction: To correct the parameter „typ“ in the function call
of the PC user software.

ERR_S5_BST = $02; (* module not available *)

With a single-element access with element type DB_SNG or with a
block element type DB_BLK the programme tried to access a not
existing module.

Correction: To create data block in the programmable
controller or to correct parameter „bst“ in the
function call of the PC-user software.

ERR_S5_ELM = $03; (* element not available *)

With a single-element access with element type DB_SNG or with a
block element access with element type DB_BLK the programme tried
to access data in a data block which are not available.

Correction: To extend the data block in the programmable
controller correspondingly or to correct the
parameter „adr“ or „len“ in the function call of the
PC user software.

With a single-element access with element type Z_SNG or T_SNG the
programme tried to access timer or counter with a number > 127.

Correction: To correct the parameter „adr“ in the function call
of the PC user software.

With a single-element access with element type MB_SNG the
programme tried to access flags with a number > 199 with the size of
element Byte, with number > 198 with the size of element word or with
number > 196 with the size of ement douple word.

Correction: To check the parameter „adr“ in the function call of
the PC user software for valence.

With a single-element access with element type EB_ - or AB_SNG the
programme tried to access the process image of the I/O range with
number > 127 with the element size Byte, with number > 126 with
element size word or with number > 124 with element size douple
word.

Correction: To check the parameter „adr“ in the function call of
the PC user software for valence.

With a single-element access with element type PB_SNG the
programme tried to access elements of the P-peripherals with number
> 255 with element size Byte, with number > 254 with element size
word or with number > 252 with element size douple word.

Linkage with PLC

180 VIPA GmbH CP486 ⋅ 00/14

Correction: To check the parameter „adr“ in the function call of
the PC user software for valence.

ERR_S5_SIZE = $04; (* invalid element size *)

With a single-element access with element type Z_SNG or T_SNG the
programme tried to access timer or counter, whereas the parameter
element size was not set to word access (WORD_ELM).

Correction: To correct the parameter „size“ in the function call
of the PC user software.

With a single-element access with element type MB_SNG or
ABS_SNG the programme tried to access flags or absolute addresses
with the parameter element size RBYTE_ELM.

Correction: To correct the parameter „size“ in the function call
of the PC user software.

With a single-element access with element type EB_SNG or AB_SNG
the programme tried to access inputs or outputs in the process image
with the parameter element size SEMA_ELM or RBYTE_ELM.

Correction: To correct the parameter „typ“ in the function call of
the PC user software.

With a single-element access with element type PB_SNG the
programme tried to access the P-peripherals with the parameter
element size BIT_ELM, SEMA_ELM or RBYTE_ELM.

Correction: To correct the parameter „typ“ in the function call of
the PC user software.

With a reading single-element access with element type ABS_SNG
the programme tried to read absolute addresses with element size
SEMA_ELM. This type of access is only possible in writing under
absolute addressing! When single bits are to be read then the element
size BIT_ELM has to be used.

Correction: To correct the parameter „typ“ in the function call of
the PC user software.

ERR_S5_BIT = $05; (* Bit-number too high *)

With a single-element access with element type MB_SNG or
ABS_SNG and the element size BIT_ELM or SEMA_ELM the
programme tried to access a flag bit or an absolute address bit with a
bit number > 7 (15).

Correction: To correct the parameter „bit“ in the function call of
the PC user software.

With a single-element access with element type EB_SNG or AB_SNG
the programme tried to access an I/O-BIT with a bit number > 7.

Correction: To correct the parameter „bit“ in the function call of
the PC user software.

ERR_S5_STRT = $06; (* invalid starting address *)

With a block element access with element type „module“_BLK the
programme tried to transfer blocks via modules whereas the relative
starting address in the block is> 32767.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 181

Correction: To correct the parameter „adr“ in the function call
of the PC user software.

ERR_S5_LEN = $07; (* invalide block length *)

With a block element access under all element types the programme
tried to transfer blocks with a length > 504.

Correction: To correct the parameter „len“ in the function call of
the PC user software.

ERR_S5_ADR = $08; (* Address too big *)

With a single- or block element access with element type ABS_SNG
the programme tried to addess an address
> FFFFh in a programmable controller of the typee 115U. However,
the CPUs (up to CPU 944) have an address range of only 64 KB.

Correction: To correct the parameter „adr“ in the function call
of the PC user software.

ERR_S5_QVZ = $09; (* QVZ/ADF in the programmable controller with reading/writing *)

The programme tried to access an address range which is physically
not available.
The programmable controllers of the type 135 and 155 make this error
message available. A programmable controller of the type 115U would
be set to STOP in this case.

Correction: To correct the parameters „typ“ or „adr“ in the
function call of the PC user software.

ERR_S5_944 = $0A; (* CPU 944: module in prog.bank *)

With a block element access with element type „module“_BLK the
programme tried to access a module which is not in the data block.
(This only concerns the CPU 944 form the programmable controller
type 115U)

Correction: To create a module in the programmable controller
in the data block bank (via BIB-Nr. 19285) or to
correct the function call in the PC user software.

Linkage with PLC

182 VIPA GmbH CP486 ⋅ 00/14

6.4.5 Storage of Process Images to Bank 7

The process image can also be directly read out by the user. Following survey shows how bank 7 is

structured. Direct access is very fast:

Address in the
bank (hex)

Byte 0 process image EB 0 -+
. ¦
. ¦ 128 byte PAE 0-127
. ¦

Byte 127 process image EB 127 -+
Byte 128 process image AB 0 -+

. ¦

. ¦ 128 byte PAA 0-127

. ¦
Byte 255 process image AB 127 -+
Byte 256 marker Byte 0 -+

. ¦

. ¦ 256 byte marker 0-255

. ¦
Byte 511 marker Byte 255 -+
Byte 512/513 Timer 0 (high/low) -+

. ¦

. ¦ 128 words timer 0-127

. ¦
Byte 766/767 timer 127 (high/low) -+
Byte 768/769 counter 0 (high/low) -+

. ¦

. ¦ 127 words counter 0-126

. ¦
Byte 1020/1021 counter 126 (high/low)-+
Byte 1022 count byte 1) + count byte
Byte 1023 trigger interrupt on CP

Annotation:
All values of this bank are refreshed when the handling module CP L/S is called up (if this is
enabled on the formal operand of the handling module). After every data refreshing in the bank 7
the handling module increments the count byte by 1. CP recognizes by this count byte whether data
are valid and how often they have been refreshed since the last reading. Data are then valid when the
count byte content is involved in the range dual 1...255. iegt. In the case of overflow the count byte
starts again with 1.
The handling module Synchron sets the current counter, address 3FE in bank 7 to 0. By that the CP
recognizes that the data in bank 7 are not valid in the moment.
This bank needs not to be deleted by the CP if 0 is contained in the count byte (address 3FE of
bank).
This bank can only be write accessed by the handling module.
The handling module for refreshing data of bank 7 does not trigger any interrupt.

Linkage with PLC

CP 486 ⋅ 00/14 VIPA GmbH 183

6.5 Access on the CP386COM from WINDOWS

From the tool disk version 2.2 onwards a programme library for MS-WINDOWS 3.1 with the

following data is available:

The header file CP386WIN.H and the OBJ-file CP386WIN.OBJ.

The file CP386WIN.H contains the necessary definitions for an operation on WINDOWS.

The file CP386WIN.OBJ contains the communication functions on WINDOWS. The functions

have to be called as described in chapter 6.4 for DOS (exception: CP_stat_AG)

Changes in the function call:

CP_stat_AG: CP_stat_AG(byte r) with r = Order number.

New functions:

CP_init(void): Creates a data area for the communication on Dual Port RAM and

returns a pointer on this area.

CP_exit(void): Sets free the data area. This command has to be called at the end of the

programme.

Note: In the SYSTEM.INI under the section [386Enh] the Dual Port RAM area has to be

excluded with the command EMMExclude = ... from the WINDOWS memory

management in addition to the entry in the CONFIG.SYS!

(This is valid for all cases where the CP486 runs on WINDOWS 3.1 because WINDOWS

does not exclude the Dual Port RAM independently!)

Tool disk 2.2 contains an example for the operation under Windows.

Technical Data

184 VIPA GmbH CP486 ⋅ 00/14

7. Technical Data

7.1 Base Module

Power supply +5V +/-5%

Power assumption (without options) 1.4 A (CP486S)

1.6 A (CP486M, CP486ML, CP486L, CP486XL)

Loading voltage for options 24V DC +/-10%

Processor CPU80486SLC

Clock frequency 25MHz/33MHz

Main memory 1 MB / 4 MB with parity

Video-interface VGA, 16Bit, 256KB, max. 800*600 pixel resolution

connection to TTL-, EGA-, VGA-, BAS-, RGB-

monitor (cable length for BAS and RGB: 250m)

connection for EL display (EGA, mono, 640*350 pixel)

Option: EL-display VGA 640*480 pixel, 16 grey levels

(only CP486M, CP486L and CP486XL)

Option: TFT-display VGA 640*480 pixel, 16 or 64 colors

(only CP486M, CP486L and CP486XL)

Keyboard Standard-AT (symmetrically up to 250 m)

Serial interfaces COM 1/3: V.24

COM2: TTY

COM4: RS422/485

Diagnostic interface Send and receive data with TTL level

Parallel interfaces LPT1 (Centronics)

LPT2 (Centronics via pin header)

Floppy disk drive 3.5" (720KB / 1.44MB)

Hard disk interface IDE standard

Chip silicon disk Slot for 2 DIP-ICs, 32-pin

Memory card silicon disk Panasonic interface

CP-interface 8 banks each of 1K*8

Watchdog triggerable, LED display, reset key

Write protection Serial number and write protection logic

AT-bus ISA-96-Bus, 16Bit, short card

+/-12V/200mA, -5V/50mA

System-Bios QUADTEL acc. to VIPA specification

VGA-Bios C&T acc. to VIPA specification

Technical Data

CP 486 ⋅ 00/14 VIPA GmbH 185

Dimensions

Height 233.4mm
Depth 160,0mm

Memory requirements 1 slot (CP486S)
2 slots (CP486M, CP486ML)
3 slots (CP486L)
4 slots (CP486XL)

Environmental conditions (without options)

Operation Storage/Transport

Temperature 0°C to 55°C -20°C to 70°C

Temperature variation 20°C/h 20°C/h

Air humidity 95% at 25°C 95% at 25°C

Altitude above sea level -300m to 3300m -300m to 13000m

Technical Data

186 VIPA GmbH CP486 ⋅ 00/14

7.2 Option Hard Disk

Environmental Conditions:

Operation Storage/Transport

Temperature 5°C to 50°C -40°C to 70°C

Temperature variation 20°C/h 20°C/h

Air humidity 10% to 90% 10% to 90%

Altitude above sea level -300m to 3300m -300m to 13000m

Shock

1/2 Sine, 11ms 5G 100G

Vibration

1 Octave/Min., 10-400Hz 1G 5G

7.3 Option Floppy Disk Drive

Environmental conditions :

Operation Storage/Transport

Temperature 4°C to 46°C -20°C to 60°C

Temperature variation 20°C/h 30°C/h

Air humidity 20% to 80% 10% to 90%

Altitude above sea level -300m to 3300m -300m to 13000m

Shock

1/2 Sine, 10ms 5G 15G

Vibration

1 Octave/Min., 10-100Hz 0.5G 2G

Technical Data

CP 486 ⋅ 00/14 VIPA GmbH 187

Technical Data

188 VIPA GmbH CP486 ⋅ 00/14

	00_Manual_CP486_hb73e
	Contents

	01_Introduction
	1.1 General
	1.2 Application Area
	1.3 Structure and Operation
	1.4 Block Diagram of CP486
	1.5 Special Components

	02_Hardware
	2.1 Structure of Modules
	2.2 Setting of DIP Switches
	2.3 Configuration of 24V Power Supply
	2.4 Installation of Chip Silicon Disk
	2.5 Installation of the Memory Card Silicon Disk
	2.6 Installation of an Additional Silicon Disk Board
	2.7 Numeric Processor Installation (FPU)
	2.8. Interface Installation for VGA Flat Displays
	2.9 Setting of AT Additional Boards
	2.10 Slots for CP486 in the PC

	03_Assignment_of_Plugs
	3.1 15-pin SubD-Socket for Connecting the Monitor
	3.2 9-pin SubD-Plug with V24 Interface (COM1 and COM3)
	3.3 9-pin SubD-Plug with 20mA Interface (COM2)
	3.4 9-pin SubD-Plug with RS422/485 Interface (COM4)
	3.5 5/8-pin DIN Socket for Keyboard
	3.6 25-pin SubD-Socket with Centronics Interface (LPT1)
	3.7 2-pin Plugin Socket for External 24V Supply
	3.8 15-pin SubD-Socket with VIPA Diagnostic Interface
	3.9 Two-Part Clip Connector with AT Bus
	3.10 PLC Base Plug (48-pin Male Connectors)
	3.11 Memory Card Plug (Panasonic Memory Card)
	3.12 Slot for Interface Modules
	3.13 30/34-pin Pin Header for Floppy Disk Drive (X13)
	3.14 50-pin Socket (X12) with TFI Interface for Hard Disk
	3.15 50-pin Socket (X11) with AT Bus Signals for Special Use
	3.16 26-pin Pin Header (X27) with Centronics Interface (LPT 2)
	3.17 20-pin Pin Header (X22) for Flat Display Connection
	3.18 16/24-pin Pin Header (X21) for Front Display and Keyboard
	3.19 2-pin Pin Header (X4) for Speaker Connection
	3.20 Fuses for External Current Consumers

	04_BIOS
	4.1 System Structure
	4.2 BIOS-SETUP
	4.3 System Register
	4.4 Address Assignment, Interrupts and DMA Channels

	05_Utility_Software
	5.1 MS DOS Utilities for Silicon Disk Operation
	5.2 VGA-Configuration Program
	5.3 Program CPLINK for Computer Link
	5.4 Program for Visualizing the PLC Process Image
	5.5 EMS Driver
	5.6 System Test Program

	06_PLC_Linkage
	6.1 General Description
	6.2 Installation of Bank Software for Linking PLC and CP486
	6.3 PLC-Jobs for CP486 (Functions for Bank 0 and 1)
	6.4 CP486 Jobs for PLC (Functions for Bank 2, 3 and 7)
	6.5 Access on the CP386COM from WINDOWS

	07_Technical_Data
	7.1 Base Module
	7.2 Option Hard Disk
	7.3 Option Floppy Disk Drive

